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SYMBOLS
for chapters T - IV

Note: The symbols used in chapters starting with Chapter V
are listed in their chapters.

A without subscript, a dummy constant
A with subscript, a constant defined by equ. (099-9a)
B without subscript, a dummy constant
B with subscript, magnetic flux-density, weber/m2
gan.
mBn magnetic flux density at point "n" induced by the

magnetic dipole at point "m", weber/m2

Cc without subscript, a dummy constant

o with subscript, a constant, defined by equ. (130-1)
through (130-17)

. ¥

D dielectric displacement

E a dummy vector

F a dummy vector

A

h unit vector in the direction of the magnetization-vector

Tf magnetomotive force gradient, ampereturn/m

o .

mHn magnetomotive force gradient at point "n" induced by
the magnetic dipole at point "m", ampereturn/m

e

°H mangetomotive force gradient induced only by electric
currents, ampereturn/m

A

i unit vector in the x direction

<} unit vector in the y direction

J current density ampere/m

1& unit vector in the z direction

K constant defined by equ. (109-1 through 35) and (101-4
through 7) :

L constant defined by equ., (102-1 through 5 and 15)
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e,

2
m magnetic dipole moment, ampereturn.m

magnetic dipole moment at point "m", amperetuxwlomz

m
m N

ﬁl magnetization vector at point "m", identical with the
magnetic dipole moment per unit volume at point "m",
also identical with the amperian current density on the
surface of a small cylinder surrounding point "m",
ampereturn/m ‘ :
the last number in a series

Rk a distance, m

r a distance, m

Tin the distance of point m from the point n ; meters

Sm a surface spanning a current-loop. m2

t time, sec,

v a volume m3

m ]

x numerical value of the x coordinate, m

y numerical value of the y coordinate, m

-4 numerical value of the z coordiante, m

8 angle between the direction of the magnetic dipole

: moment at point "m" and the direction of the distance

rmn between points '"m" and "n",

u, permeability of empty space, 4m10-7 weber,m/ampereturn

- relative permeability, numeric

by summation

0 scalar magnetic potential, weber/m

Subscripts

m ~at point "m"

n - at point "n"

r or rel relative

x component in the x direction

vi
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Yy component in the y direction

z component in the 2z direction

Superscripts

m induced by the magnetic dipole at point "m"
o induced by electric current in free space

vii
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STUDY TO DEVELOP METHODS OF PREDICTING
SPACECRAFT MAGNETIC FIELDS

By Andrew A, Halacsy¥*

SUMMARY

A procedure to calculate the magnetic fleld in three di-
mensions and in the neighborhood of a magnetic bedy of finite
permegbility, like a satellite though required, was not known
so far.

Such a procedure is presented here, in three sections, as
follows.,

Sectionl. Calculations are presented which define the m.m.f,
grad. °Hn in points of a three dimensional free space, for an

arbitrary current system,

Section II. Calculations are presented which determine the
total m.m.f, grad., -ﬁn at points within magnetic bodies of

field dependent permeability. This total m.m.f. grad. results
as the sum of the m.m.f. grad. °H -8 calculated in Section I.

-
and the m.m.f, grad. mHn—s resulting from dipoles at other

points of the magnetic body. The dipoles at each point in
their turn are induced by the total m.m.f. grad. This calcu-
lation agrees with physics teaching that the magnetic moment
of such points arises by the m.m.f. grad. °Hn due to the cur-
rent system and by interaction, T

Section III. Calculations are presented which determine the

3 dimensional m.m.f, grad. at any arbitrary point outside the
magnetic body or bodies considered in Section II. Values of
the total wm.m.f. grad. are found by summing the m.wm.f. grad,
calculated in Section I with the contributions frowm the points
of magnetic bodies considered in Section II.

All calculations are computerized, The computer programs
are attached and explained in details. ‘ '

The calculations are in good agreement with laboratory
results. ' ‘ 4

*¥Consulting Engineer, Heat Magnetic Engineering Co. and
Professor of Electrical Engineering, University of Nevada,
Reno, Nevada ’
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I. INTRODUCTION

General

The magnetic field of a spacecraft has its origin in
electric currents and magnetic dipoles present in the space-
craft. The magnetic dipoles are not necessarily induced by
the electric currents in the spacecraft but can be induced
by any other magnetic field present in the space and so can
be the current,

Consequently, the magnetic field of the spacecraft does
not differ from and can be analyzed as any other magnetic
field.

Though several ways are known to analyze magnetic fields
in two dimensions there was very little done to develop three-
dimensional analysis needed to analyze the three-dimensional
field of a spacecraft. The few attempts made for three-
dimensional analysis are known to have run into difficulties
of great complexities, when field dependent permeability was
considered.

An attempt was made to analyze magnetic fields in three
dimensions with field dependent permeability of ferromagnetic
materials present in the field., This attempt tried to aveid
the greatest source of the difficulties which is in the use
of a magnetic vector potential. A scalar potential is used
in this analysis. This 1s made possible by performing the
analysis only for points where no electric current exists as
in the field of a spacecraft,

No such type of analysis is known to the investigator. It
is believed that this type of analysis is quite novel in its
use of the magnetic scalar potential by which the calcula=
tions are reduced to scalars instead of vectors. It turns
out that there are two scalar guantities to be calculated
at each point considered. They are the magnetic scalar po-
tential and the permeability. They define then the magni-
tude and the direction of the magnetic field in those points.

This analysis does not require boundary conditions because
there 18 no integration as required if the magnetic vector-
potential is used, and s0o a quite general solution can be
reached. Then the geometries can be inserted in a kind of
subroutines. This way the computer-program is valid for any

. geometry except the geometrical subroutine and is less complex

than if the vector potential would be used. L

Basically, the analysis presented here solved Maxwell's

equations directly,



The use of the magnetic scalar potential, , leaves only
one of Maxwell's equations, v.B = 0, and this if written in
terms of and 4, provides ene equation for the problem,
Another equation for ¢ and U is arrived at by writing H = -yo
" for the permeability curve H = f(H).

The ferromagnetic body 1is divided into a finite number p
of boxes., The magnetic moment of each of which is then con-
centrated in a single point in ita center. The two equations
for ¢ and y4 are written for each of these points.

The result is a set of equations, 2p in number for ¢
and U4, each p in number, that is for 2p unknowns. Origi-
nally the equations were partial differential equations, and
they are linearized for the numerical solutions. These linear
equations are solved, for instance, by matrix inversion.

The calculation was computerized, and the programs sec-
tionalized. Fortram IV language was used for an IBM 360/50
machine or equivalent, This part of the work was done by
Proefessor G. H. Clark, University of Nevada.

Laboratory verification was performed on a limited number
of specimens and the fit was 3.16% for the current field, and not
so, good for the dipoles.

, It is realized that a procedure like this one would be
useful not only to investigate the magnetic field of satellites
but that of any other space with the presence of ferromagnetic
bodies and it would be useful to solve several other problems
of present day engineering which are yet unsolved, so for
instance, for power-flow and short-circuit studies of very
large interconnected electric power systems; for analysis and
design of elastic structures, etc.




The Physics of the Problem

The electromagnetic field is completely defined by
Maxwell's equations

#.7.23D g .28
- 9xH = J - -a-i-;- 9xE = - 3T
- -
v « B =0 ge D = p
I B=uu,H D=c,eo B

- - - — =3
) These six equations have six unknowns, H, B, J, E, D, ¢,
{ and so they should be sufficlient to calculate these unknowns,

Though the vectorial guantities are fine for theoretical
expressions, but how can six equations be solved for six vec-
tors? After all, a vector needs three quantities to define its
magnitude and direction; either its three Cartesian components,
or its magnitude and two directional cosines.

. A

Though H ang § has the same direction, and so has E and 5i
and though the yxH equation, and the vxE equation allows to
make use of certain orthogonalities between H, E, and 7,
etc.,, 8till great complexities arise,

Fortunately Maxwell's equations simplify drastically
when_some restraints are permissible.

| 1.) The most common restraint is to assume no variation
? in time, the magnetostatic case,

. - The time derivatives vanish in this case, and the curl
! of H becomes wvyH = J, what is Ampere's law.

2.) The electrostatic field is not required in the dis-
j cussed case (in the static case). Even if it is, it can be cal-
| culated separately because electrostatics and electromagnetics
- are connected only through the two time derivatives in Maxwell's
equations and these time derivatives vanish in the static case.
Tris is equivalent to say that di-electrics and magnetisms are
connected only by Faraday's and Henry's law of induction,
non-existing in the static case. Of course, the electric cur-
rents still produce a magnetic field, and so the remaining
o Maxwell equations to be solved are then:




— -
vx H=J
v.B=0 (100—2)
—— o~
B =uu H (100-3)

3.) Another great simplification occurs when the field
is analyzed only outside of real current-carryving conductors,
(not dipoles) where T = o. This makes Vx%ﬂa O with the result
that now the vector potential, A, can be omitted completely,
and a magnetic scalar potential, ¢, can be used instead of it.,
The gradient of this magnetic scafar potential, ¢ is the m.m.f,
gradient H,

—V(p-'-" —ﬁ . (100-'!")

Of course, the curl of a gradient is always zero, and
s0 a scalar potential, ¢, chosen this way satisfies the now trun-
cated Maxwell's equation automatically,

Bl

v x H=0 (100-1)

o Follows that using a scalar potential, only the equation
veB = 0 and the magnetizing curve, B = |UH are to be satisfied.

- ——>
ve B, =v. pH_ =0
p = f(H)
H = -yp so these are two equations for two unknown

scalars Py N

ve can be dissolved into 3 scalar equations for

39, 39, 30 . \
0X 3y 2z

Steps Taken To Achieve a Numerical Solution

Several steps were required to wmake the theory applicable
to real problems with numerical dimensions and to arrive at
numerical values of H,

A.,) The dipoles are induced in the magnetic material by
the field. These dipoles have their own field too. The field
acting at the location of a dipole is therefore the sum of the
field of the current system, °H , and the fields of all other
dipoles, Z ﬁH n

n

6




— — .. §
H = ©H +§ H
n n n

m
m#£n

B.) The calculation is to be made practical. Therefore
the magnetic material is divided into small blocks, then uniformity
of H and W is assumed within each block, and all dipoles of each
block are considered lumped into one single dipole located in
the center, m of the block.

The strength of the magnetization of m is8 expressed by the
magnetization vector
—

M =

-
m (urel"l)H

]
The dipole strength is expressed by the magnetic wmoment,
— —&

mm = vam

where Vm is the volume of the block.
A diple at m has a potential at another point, say the previously
examined n, as follows,

N - cos 0
Pn = Tn"m 2
mn

where Qi@ the angle between the direqgtion of the magnetization
vector Mm and the directed distance T from m to n,

Writing M_ as above, the scalar potential of each dipele at n
can be written in terms of the H_ at the location of the -

m
other dipoles.

So the Hn at each point can be expressed in terms of the Hm-s

at the location of all other dipoles, assumed to be in the
center of the subdivisions of the material.

(1

C.) Using this form of H_, .. B
the Maxwell equ.

n uan. and

-\ - o =
v .B = WuH =veu( °H_ +% H ) =0
m£n

Then all H-s are expressed as ’J; -

in this equation and a0 one has & set of second order partial-
differential equations, p in number if the material is divided
into p subdivisions. These equations are scalar equations,



The unknowns in these equations are the ¢-s8 and the m-s, each
P in number, that is 2p unknowns, twice as much as equations.

However another set of p equations is provided by the permea-
bility curves u = f(H). one for each point, in which the H-s
could be written again as H = ~vq.

This makes 2p equ. for the 2p unknown -8 and m-s, so they can
be solved for these unknowns,

D.) The trouble is that m cannot be expressed accurately
enough as an algebraic function of H.

A solution is used, therefore, as follows:

1.) An arbitrary set of mu-s is plugged into the equa-
tions at the start in the form of parametric constants. '

2.) The partial differential equations are linearized.

3.) Then the resulting linear equations are solved for
the ¢-s by any known method, for instance matrix inversion,

4,) The components of H are built as

H = - taXic H = - A H = - 20
x X Y AY z Dz

according to H = -vg

H = ‘/HZ}HZ,«HZ
x y z

5.) m is read against H from the permeability curve
for each point.

6.) These new pm-s are put into the original equations in
Place of the originally used m-s8, and the process is iterated
until the pm-s become not differing wmore than allowed from
the previous ones.

The calculation was computerized, and the program sectiona-
lized.

Special considera-
tions are given to the air-iron interface but this does require
only additional points in the air.

4
[
3
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IT1. THE DETAILED MATHEMATICS OF THE PROBLEM

ﬁ can be written in terms of o and p as shown above

B 0 (100
veB = v.p p veo= -5)

The expanded forw of (100-5) is as follows:

7
3!3'

2 2 2 3
,,(Lsg¢b_..%+b_sza)+_f_m Fe
Tax®  ay°  az ax 3x Ay

=74

)
—-——-u -
+37 52 °=0° (100-6)

The first partial derivatives of 9, are the directional
—

components of Hn. These can be written as follows

3, . 1 P doy o cos(irmn)

3x = Hpx = °Hpy - EF'ZT w (u Prm = 1) 3%X_ 33X . 2 +
m=1 mn
m#n '

39y 5 cos(Jyr_ ) do¢, 3 cos(kr )

+ + (100-7)
Ay dx 2 32 _ 33X 2
m n r m n r )
d simil i f 2%n H df 3%n H
X .
and similar expressions for ayn = ny an or az = hZ.

The derivation of these equations is given below, and thé
solution is achieved by considerations and steps as follows,
°an appearing in (100- 7) is due to an electric current-

system and can be calculated independently. It can be coﬁsidered
as a constant in equation (100-7).



Use the first partial derivatives of Cn in the form of
(100-7) in (100-6) ;

Differentiate (100-7) partially at n in order to have
the second partial derivatives for (100-6).

Write (100-6) by using the just described partial deriva-
tives and linearize it by approximating the derivatives by
finite differences.

This results in a set of linear equations of the type

¢y = f(prn) (100-8)

For each n point there is an equation ilOO-B;.n = 1 to p.

Use an assumed n # 1 for each point n, in . Solve

(100-8) for o, = Se

100-8

3
Calculate an = 525
n (100-9x)
de
H, =5~"E
Y n | (100-9y)
L
an = 5;; , numerically. (100-92)
2 2 2 -
H_ =,V/an + HnY + H_ (100-10)

Read m_ from the magnetizing curve, (100-3). Use these p, - s
in (100-8). Solve (100-8) again for ¢, - 8 and iterate till

the differences in ¢-s and pu-s between consecutive steps
decrease to acceptable levels.

The Magnetic Scalar Potential, X"

The magnetic scalar potential Pn? at a point n is usually

10
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THE MAGNETIC DIPOLE-MOMENT AT THE

POINT m REPRESENTED BY THE CURRENT
| INDUCES A MAGNETIC SCALAR
POTENTIAL M{, AT THE POINT n

FIGURE ! | 1



written in terms of the magnetic dipole moments, m_, the dipole
m
being located at a point m, see Fig, 1.
The magnetic dipole moment, m o of electric ampereturns, i,
enclosing a small surface, Sm, containing the point, m, is
m = iS_ Ampereturnsesquare meter. (150-1)
This is 80 even if lim S ~—3% 0. The scalar potential of this

magnetic dipole at another point, n, is per ref. 1, p. 59,
equ. 4,1,

1 ARG 1 1 cos A ,
Bon = T Pm hm'rmn r 2 = Ln''m r 2 (150-2)
mn mn

In equ.(150—2) Q is the unit vector normal to the surface S
at the point m, ?mn is the unit vector from m to n, see
Fig.1{50-1)

Magnetic Dipole-moment and Scalar Potential
Of a Current Sheet Enclosing a Volume

Suppose the ampereturns are flowing not in a line like in
Fig. 1 , but in a sheet enclosing a cylindrical volume, Vm,
containing the point m, This is so even if 1lim Vﬁ—a 0. This
is shown in Fig. 2 . Note the height of the cylinder as hm.
The volume of the cylinder is then

Vo, =hs (151-1)

The ampereturn density, Mm on the surface of the cylinder is

i

h
m

then M_ amperturn/meter (151-2)

or, in reverse, the ampereturn i can be written as
i=M h_ (151-3)

The magnetic dipole-moment of these ampereturns is, per equ.

(L50-1) (151-1) (151-3)

m = i Sm = Mm hm Sm = Mm Vm Amperturnsesdquare meter

m (151-4)

Similar to (150-2) the scalar potential of the magnetic
dipole m_at n, is by the combination of(150-2) and(151-4)

12




THE MAGNETIC DIPOLE- MOMENT AT THE
POINT m REPRESENTED BY THE CURRENT

SHEET i INDUCES A MAGNETIC SCALAR
POTENTIAL M, AT THE POINT n

FIGURE 2 13



-L‘ —
moo=1 , vy .m Yem 1 (151-5)
n b m wm b * r 2
m mn r
mn

Inspecting equ.(lSl—S)one recognizes Mm as the magnetization

at m, and h as the direction of the magnetization vector,

- A
M = M H
m

m in (152-1)

This is so because Mm.is the total of the dipole moments in

unit volume, and

4m
Mm = vﬁ from equ. aﬁl-h) (152-1a)

The Magnetic Flux Density and the M.M,F. Gradient
Induced By Dipole Moments

At n the induction or magnetic flux density mﬁ , due to
n :
the magnetic dipole moment at m, is the gradient of the potential

of that dipole moment, the potential being taken at n, multi-

plied by the total permeability ur n uo, taken at the point n,
9
mﬁn = - ML oM, ey (152-2)

The m.m,f, gradient at the same point is

H = = - vcpn : (152—3)

Combine equ.(152-3)(152-2)(151-5)(152-1) and consider V_  a
constant. ‘

-
T
m-? 1 -~ mn
Hn = - g Vm V(Mm. r3 ) (152—h)
m

The Total M.M.F. Gradient

The m,m.f. gradient at any point is the total of m.m.f.
gradients caused by various sources. The sources are electric

e
currents, and magnetic dipole moments. °Hn denotes the m.m,f.

b
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gradient component atn, gradient caused by electric airrents, mﬁsn de
notes the m.m.f. component at n, caused by the magnetic dipole

Y
moment at m, The total m.m.f, gradient Hn at n can be written
~as follows,

& a 1Y ———
— or
A T - A (152-5)
m=1 .
m#£n

Here the summation is for all magnetic dipole moments in points
mz=1 to p, which have a magnetic potential at n., This, of course,
excludes the dipole moment at n from the summation, as indi-
cated,

Note that the summation is a summation of vectors. The

-
induction, or magnetic flux density, Bn , at n is

——h —
Bh = ¥r ,nMo H ‘ (152-6)

.S
Consider that the magnetization vector M at m in a material

with u is by definition as follows"
rel,m
i — -
o My =, om1) By and M, = (u-1) H (153-1)
i Combine (152-6) (152-5) (152-4)(153-1)
: :
- " - 1 - mn_ |(153-2)
— [+ - v ————
| Bn = Moty n Hn Zl hmr HoMr n vm v Mm * r 2
! m=1 mn
} and
N - O — frcadiNY -
f H = °H_ Y i Ve Py - (153-13)
‘ m=1 mn
mEn
Rearrange and combine (153-3),(153-1),(152-1)
: .2
- it 1 m mn
: = © - —— - v/ -
H, = "N bm Z: Va Hn (“r m 1) \ r 2 (153-4)
‘ m=1 mn
[ m£n

} | | 15
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DIRECTIONAL RELATIONS
IN A THREE-DIMENSIONAL

SYSTEM.

FIGURE 3

: oo




4
!

A Cartesian coordinate system is used, in which the three axes

are x,¥,zZ, and the three unit vectors in the direction of these

A\

A Ve A
three axes are i, j, k. The unit vectors Q and. r shown

in equ. (155-1) can be expressed in terms of their directional

A A
cosines and the uwnit vectors i, 3, k, as follows,

A A A A

h = i cos(ih) + j cos(jh) + k cos(kh) (155-2)

=1 cos(ir) + ? cos(jr) + R cos(kr) (155-3)
and their scalar product is -

A A

h « r = cos(her) = cos 8 (155-4)

see Fig. 3

?;n denotes a vector connecting points m and n and pointing from

the point m towards the point n. By comparing(152-5)and (153-4)
mﬁ; can be written as follows:

b .7

M e o™ = - -V H (4 - 1) of BEm 155-5-1)
n n Ly mm TN r2 §Oh6-l)
mn
The only variable in this equation is

AN A .

hm'rmn A rmn

— = hm. 5 (155~5-2)
r r (ou6-2)
mn mn

This expression can be developed (Appendix III) to .the
following one:

17



. T cos{ir ) , cos(jr. )
. an A 5 n 5 an
\Y ﬁm. 5] = i cos(ihm)s—x- B S— + cos(jhm)g-; ---——-é-——-—- +
Ton el \ .
cos(kr ) cos(ir_ )
A mn A k) mn
+ COS(khm)ax "—*;§~—*- + 3 cos(ihm)ay i +
mn mn
cos(jr_) cos(kr_ )
3 o mn 9 e mn’ |
+ cos(jhm)ay . + cos(khm)ay i +
mn mn
A A cos(irmn). 3 cos(jrmn)
+ k cos(ihm)gg 5 + cos(jhm)az 3 +
mn Tmn
3 cos(krmn)
+ cos(khm)-a—; — k 5155-—8-1)
on 049-2)

<
Write °Hn by its three components in equ.(lSB-h)and write the
second term there by using (049-2)

P
- ~ 2 A 1 .
Hn = 1°an + JOHnY + k°an - in 2: VmHm(urm-l)
m=1
; m#n ‘
AR AN I
--{i = (N +J 55 (v) + x %E (?i} (064-1)
where Vv= ré [%os(ihm) éos(irmn) + cos(jhm) cos(jrmm) +
mn

§'cos(khmn) cos(krmnﬂ

- N —
The x component of Hn is an and it is as follows:

.. 3

P
A 1 2
an = ioan b e Z VmHm(Hrm-l) 1;—;(‘(’) (064-2)
m=1

m#n

18




R

il

‘.
[ReE—

i
i
i
v

T

nx

Similarly

7

ny

=i

na

All of the
equations

H
mx

H
my

H
mz

p

ir )
~ 1 . cos( mm
11°Hax = Ow Z vam(urm - 1){c°s(ihm)hx 2 +
’ m=1 Tun
m#£n
cos(jr ) cos(kr )
‘h ) e e n_ '
+ cos(;hm)ax 2 + cos(knm)ax :
mn mn
(064-13x)
> (ir )
R 1 5 cosir
J oHny T 4nm 2: m m(urm-l) {;os(ih )ay 2 *
m=1 Tmn
m#n
cos( j ) cos(kr_ )
m
+ COS(Jhm)g; 2 LL R cos(khm %; 5
mn T'mn
(064-3y)
P
: ir )
A 1 L COS( —
k °an - Im Z:Vmﬂm(urm-l) cos(ihm)az > +
m=1 mn
m#n
cos(jr ) cos(kr_ )
o D 9 mn A mn
+ cos(ghm)az — + cos(khm.)az ——
Tmn Tmn
(064-32)

derivatives are taken at the point, n, It is in these

H_ cos(ihm) (064-4x1)
H cos(jhm) : (osq_uyl)
H cos(khm) ' (06L4-421)

Combine (064-3x,3y,3z) and (064-kx1,hy1,4z1) and write the abso-
lute values of an, Hny’ H . ’

nz
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1 .
Hx = oan T Ly m§l Vm(urm - 1) Honx A X 2 M
m#n m
cos(jr_) cos(kr_ )
mn a mn
+ Hoy 3x 2 mz 3x 2 (099-1x)
mn mn
o) cos(ir )
H  =O°H -3* 5 v (u_ - 1) a_ | .
ny ny Lyy Ty W rm mx 3y r2
mén mn a%
£
cos(jr_ ) cos(kr_ )
. a_ e 2 = (099-1y) )
my Ay r2 mz Ay 2 ,1
mn mn
1 P 5 cos(irmn) \
- O - — -
Mz = “Hhy b mfl Vm(urm 1) Hinx Az 2 + i
m#£n mn oy
cos(jr_ ) cos(kr_ ) aj
mn A mn _
+ Hmy g 5 + mz 37 > (099 1z) )
: mn T on }
j

—
The M.M.F. Gradient, Hn’ in Terms of the Magnetic
Scalar Potential, Pn°

- Ay af e Al de N
H = -ve = ’E(— —= |+ j(- ———3) + k(-;—z-'l (096-1) (099-2)

nx Y (056-11) A
ob A APy ’
W= 4 (_ a_;c._) (096-2) (099-3)
Ho o= - 5% | (096-3) (099-ux)

and similarly
A?n
-Hny = - ;;— (099‘QY)
A(pn 1
an = - AZ (099-142) ;

20
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The Divergence of B in Terms of ¢ and p

Using the directional partial derivatives of ¢ for the
Cartesian components of H, the equations (099~1x,ly,1z) become
egquations for the scalar potential, ¢,and the permeability, u.

p
Ao 1 3%Pm 3 cos(iry,)
= = OH - e— Vv (U - l) *
dx nx hr m' rm dxy, BX 2
n m=1 " i rmn
m#n
, Ay c08lirgy) . m a cos (kryy,) (099-5x)
+ AY B3X 2 AZ, BX 2
m °“n ron m-on Tmn
P
. 3 cos(ir_ )
oL ey _11:_ Z v (u_ - 1) aim 2 I,
Y, i i m=1 i m ®¥n Tmn
m#n
. ';\mm 3 cns(grm ) Am A COS(l;r ) (099"5}’)
N xnnayn ro AZ Ay ron
N
P
i APh 1 dpy 2 cos(irmn)
VSt = - °H T Z v (u - l) i
Az nz ~ Um m"rm g A2y
- n m=1 " | rmn
| mg£n
| . a5 cos(jr_) . APm 3 cos(kr,,) (099-5z)
5 35y Az 2 AZ Az 2
m”""n r_ mon Tun

These expressions for the derivatives of ¢ are derived in
order to use them in the wv.B = O equation already wi¥ritten in
terms of ¢ and j above. An inspection of that equation (100-6)
shows that the second partial derivatives of ¢ are required
too. They result from the first derivatives by another dif-
ferentiation.

Express the second order partial derivative of Pr-s

21
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3 ¢y , ® ™ , 3 n , by differentiating (099-5x,y,z) at n
2 2 Azz
A Xn AVn n
32¢ L d¢p. 2 cos(ir_ )
n_ 3 oH _ 1 Z v (u - 1) m A mn .
2 7 DX nx Ln m' ' rm AX 2 2
AX n . el mAX ron
m#En
Ao 32 cos(jrmn) Aon 32 cos(krmn)
+ 55 > 5 v 5 5 (099-10xx)
m 3y x r m Ax r
n mn n mn
azm P dg. 2 cos(ir_ )
no_ _2 oy i v (u - 1)|==2 mn_
2 DY “ny Ly m' rm 3% 2 2
AYn ~on m=1 m Ay, Tmn
m£n
a¢m 2 cos(jrmn) A¢m a2 cos(krmn) L
e > . + > 5 (099-10yy)
M AYn “mn m Ay Tmn
2 p
3w ap .2 cos(ir )
nz__a...... °H _,..].'_... V(U. 1) m 3 +
2 D2 nz Yy m' rm 3x 2 2
3z n ~1 m Az Ton
mf£n
Aoy 52 cos(jrmn) APy B2 cos(krmn)
v 353 5 > * 537 > — (099-10zz)
m Nz r m Az r
n mn mn

It must be observed that if the derivatives are taken at
the point n, and not at the points m, the quantities at the
points m are considered as parametric constants. Such are
the first partial derivatives of ¢ on the right side of the
equation but not on the left side. The differentiation must
be performed on the components of °Hn , but not on Vm(urm-l).
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The differentiation must be performed also on the terms con-
taining the distance ron between point n and m, because

they are functions of the location, n.

The components of °T~I are given by the geometry and the
electric currents and can be calculated independently. They
can be considered as constants for the s u-equation, The deri-
vatives containing the rn distance between points m and n are

dependent only on the geometry and they too can be considered
as constants. Similarly the volumes Vm.

Set of Equations for the Magnetic Scalar
Potential and the Permeability

Perforwming the differentiations and other mathematics and
lumping all terms not depen%ing on o or 4 into constants then
using the results in the v.B = 0 equation, transcribed into
terms of o, and W, (Appendix IV) the v.B = O equation takes
a form as follows, after the derivatives are linearized,

- Knhxur(xn+1ynzn) + Knhxur(xn-lynzn) - Knhy“r(xnyn-nﬁlzn) *
'+_Knhyur(xnynalzn) - K,nhzur(xnynzrwl) + Knhzu::'(xnynzn--l) +
- Kvnh“r(xﬂynzn) +

P

* %1 - anix(“r(xmymzm)-g E‘lr(xn-rlynzn) N ur(xn--lynznZY +

w#n :
+ Mmn:l.y @r(xmymzm)"]] {pr(xnyh+lzn) - ur(xnyn-lznﬂ +

* Moz E‘r(xnymzm) -a Elr(xnynzru-l') | —"uf(xnynzh_lﬂ *

* Long Er( o _.«]:] o xnynzh)} ol xm+lyn;zm) v
*{Mmix E‘r ( xmymzm) "i_‘] {ur( xn+1ynzn) - Mp ( *n- lynzn)] +
+ aniy Er(xmymzm) -g Elr( X Y hel Zn) - ur( ann_lznﬂ +
* Mniz \;‘:r( xmymzm) "B E‘r( xn&nzn-rl) - _ur(xnynzn-lﬂ *

* Lung ‘E‘lr( xmymzm) "U * ur( xn‘ynzn)} o *m- lymzm)
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-Egmnjx [Pr(xmymzm);% [Pr(xn+1ynzn) - ur(xn-1?nzni‘ +
M anjy ["’r(xmymmm)"]:'1 E‘r(xnyn-rlzn). - ”r(xn‘yh-lzn_)] M

+ anjz E“r(xmymzm) ']] E“r(xnynzn+1) - ur(xnynzn-l)] +

' Ll;mJ E"r( % oY m%m) -J] * ur( xnynzn) } q’(xmym-vlzm) *

+§§mndx ey T [ (%0,170%0) - u (x v2)] o+
Moy {Pr(xmymzm)—i][yr(xnyn+lzn) - ur(xnyn,lzni] +
S TR L | TR IS CEA) I
* Liny Etr(xmymzm%i] .ur(xnynzn)} o (XY 1%0) -
Caer. e o) D e CniaZz) - Heln y7a8)] +
* Mosey e Ca¥uZa) D o) - welagyngm)]
M [ijr(xmymzm)-ﬂ [e(xp¥n2 ) - ur(xnynzn_lﬂ +
T A @r(xmy"nzm)-i_\ »ur(xnynzn)} (XY uZmi1) +
O A A B T I

* Monky (Pr(xmymzm)-ix[kr(xnyn+lzn) - ur(xnyn'-lzn.)] *

T P CRACI B R C AR IR CR AT B

* Lok [Pr(xmymzm)-éJ .ur(xny#zn{} ¢(xmymzm-1{] =0

(099-20) §

The second equation which is to be satisfied is the mag- .
netizing curve, from which My =,f(ﬁ;) (099-22)
Combine (099-2) and (099-22) Uy = f.(';":"F’m) (099-23)

(099-20) and (099-23) yield two sets of equations, each p

in number, for two sets of p unknowns, Hys o each p in

number, therefore they can be solved for these two unknowns in
theory. ‘

3
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One equation (099~22) the magnetizing curve, is not an
algebraic equation. Therefore the practical solution of the
two sets of equations (099-22) and (099-23), for the two sets
of unknowns Mo @ where n =1 to p 1is proposed as

follows,

Assume u_ -s, U # 1 in magnetic materials, (099-~24)

rm
Use these u  -s in (099-20), n=1 to p : (099-~25)
(099-20) is then a set of p equations for ¢+ unknowns
n =1 to p. Solve (099-20) for ¢p,° (099-26)
Calculate H__, Hny, H , from (099-4x,y,z). (099-27)
Calculate H_ = [|H? + H2 + H? (097-6) (099-28)
n nx ny nz °
Read M =8 from the wagnetizing curve. (099-22) (099-29)

Use these y  -s in (099-20) and iterate

(099-25 —» 26 ~—> 27 — 28 — 29 = 25) (099-30)

until | - | : < An allowed.
™M (1ast reading) ™ (1ast reading -1.) m

Accept the last resulting an, Hny’ an as the directional

components of the m,m,f. gradient,

JIIT, SECTIONS OF THE SOLUTION

. o
1.) The above detailed mathematics show that °Hn can be

calculated independently from the induced magnetic dipole
moments, This can be done everywhere, inq&yding the magnetic
bodies in the space, This m.,m,f. grad. °Hn is assumed to be

induced by the electric currents and dipoles independent from
the magnetizable materials present in the space. Furthermore,
the calculation of the °Hn-s assumes constant and unit per-

meability in all of these points. The points are taken as the
geometric centers of parts of the bodies into which these bodies
are to be divided, arbitrarily by the analyst. '

. Solution: The Halacsy Geometri Method?’%he Halacsy-~
Clark Oxford paper.3 The MAFCO code, etc,
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2.) After the °H ~ is calculated in all points, n, it

can be used in the resulting equation (099-20) of the above
described calculation. J@his equation suits to calculate the
total m.m.f. gradient, H, within the magnetizable bodies and
not outside them, Points ocutside the magnetic bodies can be
omitted from this calculation because they have no induced
dipoles and so no such point influences any other points.

3.) The m.m,f. gfadient in points_putside the magnetic
body, is the total of the m.m.f grad. °Hn as calculated in

‘#i above and the m,m,f. grad. induced by the dipole moments of
the points of the magnetizable material, These dipole moments
“are determined by the Hn—s calculated according to the above

#2, The magnetostatic potentials and m.m.f. gradients are then
determined from these dipole moments in a way somewhat similar
to the one of #1,

These are then three sections into which the calculation
can be divided, a very desirable process for the computeriza-
tion. ‘

IV, SOLUTION OF THE EQUATIONS IN SECTION #2. - {

Section #2 is the most complex. Equation (099-20) re- Mz
presents a set of linear equations, p in number, for the mag- o
netic scalar pbtentials, P at points n, also p in number.

These equations contain a big array of constants discussed
in detail in Appendix IV. and tabulated in Appendix V , Of ;
course, these constants depending on the geometry only must be '§
calculated first. . i

The solution of the set of p linear equations is proposed
by known methods. Matrix-inversion was chosen for the present, %
an available subroutine in computers, -
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V_COMPUTERIZATION

Section I of the computer program

The first section of the computer-program calculates the
field induced by electric currents in empty space(air). This
part of the program is basically the same as described in
"Computerized Calculation of Three Dimensional Magnetic Fields"
by A. A. Halacsy, G. Clark, and J. Dunks, in paper #4, presented
at the Second International Conference on Magnet Technology,
Oxford, England, 1967. That program was slightly modified by
applying it to the NASA-Apollo-Helmholtz coil-pairs used in the
test of the present work.

The new program is shown on sheets ‘
of a main program, called "Helmholtz Field Calculator" into
which the geometrical subroutine "MAGFLD" )
is inserted. These are basically the same as the "MAIN PROGRAM"
and Subroutine "COORD" of the above mentioned paper.

The new subroutine MAGFLD includes not only the geometrical
subroutine of the above referred paper but also the calculation
of the H-field. The reason for this is that the new program
calculates the H not only at one point but at a programmed
series of points and steps from point to point in the three
dimensions, those points being generated by incrementing their
x, ¥, 2 Cartesian coordinates by DELTAX, DELTAY and DELTAZ
respectively. These A, B and C values are the same as the EX,
EY, and EZ eccentricities of the original paper.

This program being geared particularly to the Helwmholtz-
coils, the subroutine specifies the number SEG=K of segments
into which each turn of the Helwholtz-~coils is segmented. The
number of points defining a turn is then KI = 2K+1, because
points are taken at the ends and at the middle of each segment.
Of course, the radius of the turn with which the program starts
RAD = .7299720550 meters and the half distance, AAZ = .35626873
meters of the two coils. with which the program starts are
given in the MAGFLD - subroutine.(See also Fig. 4 on P.70) The

_subroutine then generates the coowxdinates X(I),Y(I), And Z(I) of

the end points of the segments, I, by stepping from I to I+l until
I becomes KI, the number of the last segment in that turn.

Then the MAGFLD - subroutine calculates the values of
the Cartesian components UX, UY, and UZ of the H field normalized
with respect to inducing current, stepping from segment to
segment and adding the contribution of each segment to the total
of the H-values induced by the previous segments.

Having calculated the H induced by the first turn, the
program steps to the next turn in the axial direction by
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increasing the index JZ by one, calculates the H field induced
by that turn as before, and so on until all 15 turns are
considered. -

Then the program steps to the next layer of turns in the
radial direction, by increasing the JX index by one, calculates
the H induced by this turn, and so on until the JX index reaches
16 which is the total number of layers of turns in the radial
direction, This completes the calculation of the H field of
one coil, The calculation of the H field induced by.
the second coil of the Helmholtz pair is implemented tysw1tch1ng the Andex
IUP to IUP+1, that is changing AAZ to -.39382017 m, This
calculation proceeds through the loop #11 ' exactly the same
way as the one for the first coil.

The main program then switches to the next point in the
z-direction in which the H field is required, by increasing
the K-index by one, calculates the H-field by using the MAGFLD
subroutine, then switches to the next point in the 2z direction
and so on until the last point specified by the index KZ is -
reached, After this the main program switches to the next
point in the y direction by increasing the J index by one, and
runs through all J indices similar to the K indices, then and
finally does the same in the x direction by running through
all points by switching the I indices,

The resulting Cartesian components AHX, AHY, and AHZ of
the H-field, are stored on tape, ready to use in Section 2,
and are also printed in the A, B and C matrix form,

i

In addition to the above described programs a simplified
MAGFLD subroutine was devised,

This simplified MAGFLD subroutine lumps three turns in
the z axial direction and 4 turns in the x, radialdirection
into one turn, placed. in the geometric center of the lumped
12 turns. Of course, the AMP current value of this imaginary
turn is 12 times the AMP value of the original MAGFLD subroutine.
Otherwise the simplified MAGFLD subroutine is the same as the
original. Due to the lumping of 12 turns into one, the computer
time is reduced byaone decade order, and this reduction was
the reason for writing the simplified MAGFLD subroutine, It
was estimated that the simplified subroutine still will provide
sufficient accuracy in the investigated case. Both versions
were run, and the results compared. The difference was negli-
gible, therefore, the simplified subroutine was used in this
work.

In order to facilitate the understanding of these programs,
a List of Symbols is attached,
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HELMHOLTZ FIELD CALCULATOR

Gl

SYMBOLS
A matrix for the x-coordinates of points where the
field is calculated; meter

AH matrix for the resultant field strength of the
desired point; awperdurn/meter

AHX matrix for the x-component of the resultant field;
ampereturn/meter

4
:
et

AHY matrix for the y-component of the resultant field;
ampereturn/meter

i AHZ matrix for the z-component of the resultant field;
: ampereturn/meter

] AMP current in coil; amperes

B matrix for y-coordinates 6f points where field is
) ‘ calculated; meter

’ c matrix for z-coordinates of points where field is
calculated; meter

DELTAX X, v, %z directional increments for generating points;
DELTAY meter

) DELTAZ
i
- I indices for a three-dimensional index of points;
- J numeric
| K
i
KX number of x coordinate values for points generated;
b numeric
it
KY number of y coordinate values for points generated;
] numeric
KZ number of z coordinate values for points generated;
numeric
SEG number of segments per turn; numeric
SWI ‘ an index for separating four different configurations

of points; numeric
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SUBROUTINE MAGFLD

SYMBOLS
AAZ half axial distance of the two Helmholtz-coils ;
meter
AMP coil current; awmperes
AZ z direction reference for coils
A
B eccentricities; meter
C
H resultant field strength in ampturn/ meter %i
HX x component of field strength; ampturn/meter ”2
HY y component of field strength; ampturn/meter
HZ z component of field strength; ampturn/meter g
I indéx for segments
| : ii
Iup index for separating calculations for the two )
coil halves
JX index for turns in the x direction ] {
JZz » index for turns in the z direction
K number of segments/turn; numeric . ) j
KI number of points defining a turn; numeric ' “
4
PISEG 3.1415927 / segments -
R distance from midpoint of segment to the point 2
of which the field is calculated; meter o
RAD radius of a turn of the Helwholtz-coil; meter
SEG number of segments/turn; numeric
Ux normalized component values of the computed field
Uy strength with respect to the current, ampturn/meter
Uz induced by 1 ampere current in the conductors,
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arrays for end points of line segments approximating
a single turn.
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Section II of the Computer Program

The second section of the computer program calculates the
scalar magnetic potential, ¢, and the relative permeability, u,
in a series of points in the magnetic material which is placed
in the space in which the H-field in empty space was calculated
in Section I.

The sywbol used for ¢ is PHI and the one used for u rela-
tive is UR.

The main program for Section II is called DIPOLE PROGRAM,
(097-140) and there are three subroutines within the main pro-
gram, subroutine PHICAL calculating the scalar magnetic poten-
tial PHI, subroutine HCAL calculating the three Cartesian ,
components of the m.m.f. gradient, H in the points where PHICAL
calculated PHI, and the subroutine PERM calculating the relative
permeability, UR, in the same points, by rcading the values of
UR against the values of H, from the permeability-curve of the
material and given by ftest.

The DIPOLE PROGRAM reads and prints the maximum number IP,
JP, KP of points in the magnetic material and adjacent to it in
which points the H field is to be calculated, reads LIMIT, the
maximum number of iterations allowed, EPSI, the accuracy-limit
for the relative permeability, ITOT, the number of points on the
permeability curve, VOL, the total volume of the ferro-magnetic
meterial, TOL, a small number used to check if the determinant
is not zero. Then it reads from the tape-output of Section I
the coordinates X(I,J,K), v(1,J,K), z(I,J,K) and the Cartesian
component values AHX, AHY, and AHZ of the m.m.f. gradient H
calculated in the x, y, % points by the HELMHOLTZ FIELD CALCULA-
TOR in Section I, also from the storage-tape resulting from
Section I,

Then arbltrary starting values of the permeability are set
up in a matrix URLI,J,K) and the permeability curve is read in
a matrix form, HUR(I,J).

The LIM is set to 1. All required values are read and
matrices set up by then, and subroutine PHICAL is called.

Subroutine PHICAL

Subroutine PHICAL is the backbone of the whole program, and
it calculates the magnetic scalar potential in specified points
in the magnetic material where dipole moments are induced by the
electric currents considered in Section I of the program. It
does this by setting up the equations (099-20) and solving them
by a matrix inversion.,
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In PHICAL, a point, m, is spccified by the indices, I1,J,K
of its three Cartesian coordinates, and a point, n, is specified
by the indices, L,M,N of its three Cartesian coordinates. Before
the starting values of these indices are specified, the form of
a two-dimensional matrix, AMA(I,J) is set up. This matrix will
be the matrix of the set of equations for the magnetic scalar
potential. The I's and J's in this matrix are the indices of
its rows and columns respectively. Between Steps #1 and #3,
both the rows and columns are set up for the total number of
points ITP, in the magnetic material.

The computer can handle only finite changes, whereas the
] change in permeability is step-wise at the boundary between the
o ferromagnetic material and air. This difficulty is avoided by
setting two layers of points in air enveloping the ferromagnetic
oy material. The permeability is set equal to one in these points.

This is done in the computer program by specifying one more
roint in each of the x,y, and z directions on each side of the
material, that is a total of two more points included in IP, JP,
KP, along each line of points., This makes the total number of
points in the ferromagnetic waterial AITP = (IP - 2)(JP - 2)(KP-2).

! The volume, VM, of an element, that is the volume centered

) on an m point is either inserted directly or calculated before

1 Step #3. If the magnetic material is in a shape of a parallel-

| epiped, then one volume element is the total volume VOL of the

‘ parallelepiped (X(IP-2, JP-2, KP-2) - x(2,2,2)) X (Y(1IP-2,JP-2,KP-2)
- Y(2,2,2))X (z(1P-2, JP-2,KP-2) -2(2,2,2)) divided by the total

number of volume elements ITPI = (IP - 2)X (JP - 2) % (KP -~ 2).

[E—

The number of points in the three directions can be diffe-
rent- IP, JP, KP and so can be their separation, given as DELTAX,
DELTAY, DELTAZ in the Helmholtz calculator. Therefore, this
program can be used for all type of parallelepipeds. For other
geometries, only the generation of points and the calculation of
VM is to be changed,

The geometry is shown in Fig. 5, p. 71.

: After the base volume VM is calculated, the first point, n,
is selected by setting its indices L,M,N to 2., In each direction
the first point (L=1, or M=1l, or N=1) is in air. The first point
in iron is the second point in this direction, and this is the
reason why the starting indices, L,M,N, are set to 2.

The value of the relative permeability for air is UR =1,
This is used if the test of the indices between the entry #22
"and #5 proves the point being in air,

39



The partial derivati#ea

Au AU Al

n n n
- = URX, —— = URY, w—me = URZ
3xn AYn azn

of the permeability, UR are calculated in the x,y,2 direction
next, (after step5 ) and also the partial derivatives
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the x,y,z components of H(before step 6). The proper values of
u in air are set in by testing the indices L,M;N and as ex-
plained above, ‘

Now the indices I,J,K of a point m are set to their
starting value (2,2,2) and compared with the indices L,M,N of
the point n, between steps 6 and 7. As shown in the descrip-
tion of the mathematics, m=n must be excluded. This is the"
case if all three indices I,J,K are the same as L,M,N respectively.
In this case the program goes to stepl/, increases first X by 1,
tests it against the maximum KP and if it is less than KP, re-
turns to between steps 6 and 7, via 18, If the increased value
of K i1s begger than KP, then J is increased and tested, and the
program proceeds simllar to the result of K. A similar procedure
follows for I.

When the indices I,J,K are set and accepted at step #7,
then the differences XR, YR, ZR of the coordinates of points n
and m are calculated, and from them the distance R between the
point n and m,

As soon as R is available, the C constants are calculated
between steps 7 and 13. :

At this point a transformation of the indices is required.
This is necessary because in the matrix of the system of equa~
tions for the magnetic scalar potential the dimensionality is
two, .

Therefore, the subscript for a point (L,M,N) or (I,J,K)
wust be transformed to a single subscript for the final array.

Recall that L,M,N denote points, n, of the same region as
the points, m, denoted by I,J,K. L,M;N corresponding to a
point n, denotes a row of the matrix, while I,J,K corresponding
to a point m, denotes a column of the matwix.

A simple addition, L+M+N would not yield a single valued

subscript because it would result the same subscript for six
points, e.g. 14243 = 24143 = 34142 = 34241 = 14342 = 2+3+1,
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Therefore, M is multiplied by the greatest N which is the
same as the greatest K and is KP. It follows that the second
term of the sum is always larger than and never can be the same
as the third one,.

i

i
i
o

Similarly, L is multiplied by the greatest N, which is
KP and the result is further multiplied by the greatest M, which
is JP, the same as the greatest J. It follows that the first
term of the sum is always larger than the third and second and
never can be the same,

The inversion formula resulting in a new and single sub-
script is then

| IA = JP.KP.L + KP-M + N

The smallest value of L,M and N is 1, their largest value
IP, JP, KP respectively.

apini ,.»j

4 This 1s done before step 10,

At step 10, the calculation of the terms of the matrix
for the magnetic scalar potential begins,

The block after step 10 is the starting term B of a row
of the matrix, This term is the first part of equ. 097-20 the
term independent of PHI,

Then the calculation of the term AM(I,J,K) follows,

Now a part DUM of a matrix term is calculated and tempo-
rarily stored. Then another index~transformation is made to
‘have the index JA denoting the column of the matrix. This index-
! transformation is similar to the transformation resulting in
N the index IA and described above. : '

i The values of the matrix-terms in a column, JA are then
B calculated between steps 12 and 17, and stored in the matrix
) AMA(TA,J4).

The indices JA cannot be zero or negative. Therefore, the
! program tests the indices JA, and skips the addition of a DUM
whenever JA <1 or JA > ITP,

The summation by which the multipliers of each PHI are built
is performed not first for one multiplier, then for the next and
so on, but in a mixed fashion by which computer-time is saved,

After all terms for various indices JA are evaluated, at
step 17, the program increases the I, or J, or K index by 1 un-
less the maxiwmum number KP-1, JP-1, and IP-1 is reached and '
returns via 18, 19, 20 and 22,23,24 to after step 6, to continue
the calculation of other terms of the AMA matrix,
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As soon as all terms of the AMA watrix are available, the
PHICAL subroutine calls the matrix inversion subroutine MINV,
This subroutine soclves the system of equations for PHI. The
resulting values of the scalar magnetic potential appear in B,
indexed by TA, This ends the subroutine PHICAL and the program
returns to the main DIPOLE PROGRAM,

The DIPOLE PROGRAM prints the matrix AMA and the value of
its determinant DET and tests the latter one against TOL,

Now the value of the magnetic scalar potential, PHI is
taken from the solution by the matrix inversion where it appears
in the B-matrix and the wm.m.f. gradient H is8 calculated by
calling subroutine HCAL,

The values of the magnetic scalar potential are given the
index IA in the form of B(IA). They are required with I,J,K
indices denoting m points.

Therefore, B(IA) is converted to PHI(I J,K), at step #2

of the DIPOLE PROGRAM, The conversion is made first for TA=1,
then for each consecutive TA = TA + 1.

Subroutine HCAL, 097-1137

Subroutine HCAL is rather simple as it calculates the
three Cartesian components of H by a linear approximation of
the three directional partial derivatives of the static magnetic
potential, PHI, between steps #k and #5.

The indices I,J,K are set to be of points in the ferro-
magnetic material. Then the components and the total of H is
calculated between steps #I4 and #6.

The indices are increased by 1 in sequence and the calcu-
lation repeated until H is calculated in each point in the
ferro-magnetic material.

Then the program returns to the main DIPOLE PROGRAM again,
and the subroutine PERM is called.

Subroutine PERM, 097-138

Subroutine PERM reads the value of the permeability UR2
from the permeability curve of the mgterial against values of
H-3 at point m, indexed by I,J,K.

The H values resulted in the form HN(I,J,K) from subroutine
HCAL.,
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The permeability curvé is given in a tabulated form, HUR,
vhich is a two coluwn matrix,

The first HN(I,J,K) with I = 2, J = 2, K = 2 is tested
against the first value HUR(1,1) of H in the HUR matrix., If it
is smaller, then the permeability UR2(I,J,K) is taken as the
permeability HUR(1,2) corresponding to H = HUR(1,2) and stored.
If HN(I,J,K) is bigger then the first u value HUR(IA,1) in the
HUR matrix, then the comparison is carried through with the next
H value in the HUR matrix and so on until HN(I,J,K) proves to be
swaller or equal to an HUR(IA,l1) value. In the latter case, the
permesbility for HN(I,J,K) is taken as the arithmetic mean of
the permeability for this HUR(IA,1) and for the previous HUR(IA-1,1)
value of the m.,m.f, gradient H, see block between step 3 and 8,

Then the next H value HN(I,J,K = K + 1) is taken, etc. until
all K-8 are used, then the same follows with the J-s and finally
with the I-s,

Then the program returns to the main DIPOLE PROGRAM at
step 6, the indices I,J,K are reset to their first value which is
2 for each of them, and the new permeability UR2(I,J,K) is tested
against the old one URL1(I,J,K). If their difference is bigger
than EPSI units, then the new permeability UR2 is adopted, after
step 7. Then or when the difference between the new and old
permeability is smaller than EPSI, the next point is taken by
increasing the index K by 1, the permeability at this point is
tested as it was at the previous point, and so0 on until all K,J
and I indexes are used,

(I

! Then the DIPOLE PROGRAM is iterated with the new values
s of the permeability, URl = UR2, until either the difference
between consecutive values of permeability becomes less than
EPSI or the LIMIT of the number of iterations is reached.

At this point the Cartesian components HNX, HNY, and HNZ
of H are accepted and printed.

This completes the calculation of the H-field inside the
magnetic body. -
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DIPOLE PROGRAM

SYMBOLS

matrices for x,y,z components of the field strength
at points inside the magnetic material assuming
relative permeability of unity; ampereturn per meter
matrix of volume constants

system matrix for the magnetic scalar potentials in
magnetic material

the terms independent of PHI in the equations, After
the matrix inversion, the values of PHI appear as B-s

numeric value of the determinant of the system matrix;
numeric ‘

limit for permeability accuracy; per unit

subroutine for computing the H field from the scalar
potentials

matrix of the H field values in the magnetic material;
ampereturn per meter

matrix of the x-component of the HN valueé; ampereturn
per meter

matrix of the y~-component of the HN values; ampereturn
per meter

matrix of the z-component of the HN values; amperetﬁrn
per meter

matrix for defining the relative permeability curve;
numeric

index for the x constants; numeric

limit for the x coordinate index of points in the
magnetic material; numeric

number of points in the magﬁetic material; numeric
number of points on the permeability curve; numeric
index for the y-coordinates; numeric

limit for the y coordinate index of points in the
magnetic material; numeric




3
o

KP

LIMIT

PERM

PHI

PHICAL

TOL

UR1

UR2

N =X

index for the zZ-coordinates; numeric

limit for the z-coordinate index of points in the
magnetic material; numeric

maximum number of the iterations for testing the
permeabilities

subroutine for computing the new relative permea-
bilities from the last computed H field

solution-value for the magnetic scalar potentials
at each point in the magnetic material; Ampg?gfpurns
subroutine for computing the magnetic scalar potentials

a small number to eliminate DET= O cases which can not
be solved; numeric

matrix of assumed relative permeabilities; numeric

matrix of the new computed relative permeabilities;
numeric ‘

matrices for the x,y, and z coordinates of points in
the magnetic material; meter '
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SUBROUTINE PHICAL

SYMBOLS

matrix for the H field in the magnetic field in the
x-direction assuming ur=1; ampereturn per meter

partial derivative of AHX in the x direction

matrix for the H field in the magnetic field in the
v direction assuming uf:l; ampereturn per unmeter

partial derivative of the AHY in the y direction

matrix for the H field in the magnetic field in the
z direction assuming pr=1; ampereturn per meter

partial derivative of the AHZ in the z direction
volume‘constant matrix

matrix for the system of magnafic scalar potential
equations

the terms independent of PHI in the equation, After
the matrix inversion the values of PHI" appear in B.

cos(irmn)

= = = —in’ A COS\ X
= CMNJX = CMNIY = 0~ ——; -2 {
r r
mn .
_ CMNKX = oMNTz = &~ <cos(ir) _a_ cos(kr)
- - T Az 2 AX 2
r r
_-3_ cossir[
T ax 2
v r
= 2~ CMNIX
Ax _
_d_ cosi{jr
axX rZ
= 2— CMNIY
AY
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.....




2

1
!
ol

CMNIZ

CMNIZZ

CMNJK

CMNJY

CMNJXX

CMNJYY

CMNJZZ

CMNKZ

CMNKXX .

CMNKYY

CMNKZZ

DET

DUM

IA

IP

_ITP

AX r2
= 2~ CMNIZ
AZ
_ CMNKY = oMngz = & cos(ir) _ a_ cos(kr)
NZ 2 DY 2
r r
_2a_ cos(jr
AY r2
= 2~ CMNJX
AaXx
= 32— CMNJY
dY
= 2~ CcMNJZ
ANZ
- cos (kr)
T Az 2
r
= 2~ CMNKX
AX
A
= 2~ CMNKY
dY

= &~ CMNKZ

determinant value; numeric

temporary storage area

a single valued index equivalent to a 3 character
index. This new index denotes a row of a matrix;
numeric

number of the x coordinate values of points; numeric

total number of points in magnetic material; numeric
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ITP1

JA

JP

KP

LR

Zzt

MINV

UR

URX

URY

URZ

VM

XR

YR

ZR
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number of volume elements; numeric

a single valued index equivalent to a 3 character
index., This new index denotes a colunn of a
matrix; numeric

number of the y coordinate values of points; numeric
number of the z coordinate values of points; numeric

indices of the x,v,2Z coordinates of a point m, These
indices are used to select the remaining points after
removal of a point, n, selected by L,M,N indices; .
numeric )

indices of the x,y,z coordinates of a point, m, These
indices are used for selecting one point, n, to sum up
dipole effects from all other points in the magnetiec
material; numeric

subroutine for solving sets of simultaneous linear
equations :

relative permeability matrix; numeric

2_ URr
AX
b
2. Ur
Ay
3A_ ur
ANZ

volume of an element associated with a point
matrix for the x coordinates of points; meter

x component of the distance between two points, m and
n; meter

matrix for the y coordinates of points; meter

y component of the distance between two points, m and
n; meter

matrix for the z coordinates of points; meter

z component of the distance between two points, m and
n; meter
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SUBROUTINE HCAL

SYMBOLS : ‘ !

HN matrix for the H field in a magnetic material;
ampereturn per meter

HNX
HNY matrices for the x,y,z components of HN; awmpereturn
HNZ ) per meter
. IP number of the x coordinates; numeric
-y . _
13 JP number of the y coordinates; numeric
3 KP number of the z coordinates; numeric
B .
PHI matrix of the scalar magnetic potentials; Ampere-turns
'% X matrix of the x coordinates of points; meter
"i Y matrix of the y coordinates of points; meter
VA matrix of the z coordinates of points; meter
{ 11
’ 12
i J1 new indices used to help form finite differences;
. J2 numeric
K1
K2
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SUBROUTINE PERM

SYMBOLS

matrix for the H field; ampereturn per meter

table of the H values; ampereturn per meter VS

relative permeabilities defining the
curve; numeric »

index of the HUR matrix
number of the x coordinate values of

number of the rows of HUR (points on
curve)

number of the y coordinate values of
number of the z coordinate values of

matrix for the new computed relative
numeric

magnetizing

joints; numeric

the permeability

points; numeric
points; numeric

permeabilities;
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Section IIT of the Computer Program

This section called MAGFIA-PROGRAM calculates the H-field
in the space outside the magnetic body, after the field inside
the magnetic body was calculated in Section II,

This calculation is quite similar to the calculation in
Section I, except that here the field is produced not only by
currents but b, dipoles as well., However, the complexities of
Section II are missing because the relative permeability is
unity in this field.

The MAGFIA PROGRAM is nothing else, but the calculation of
mHn per equation (099-1x,1y,1z)(046-1) of the mathematics, then

—-adding it to thke oHn-s resulting from Section I, the MAGFLD

program if this is required, This is done in the block between
steps #3 and #4. Of course, one can have only the field of the

dipoles if the °H -8 are not added. This is done by making the

values of AHX1 HAX = 0, ALYl = BAY = O, AHZ]1l = HAZ = 0 before
step #1., Calculating only the dipole field has merit if the
dipole field is a very small part of the total., The investigated
case of the test samples as described in this report showed a

-dipole field five decade orders smaller than the field of the

current, in some instances, Truncation errors would cloud this
field in the field of currents if combined. The same is true
for tests and special test methods were used to separate the
values of the two fields, :

The details of mHn are calculated, of course, before that
between step #1 and #3.

The summation of the mHn-s is done according to equ.

(ﬁ99—1x,1y,lz) and it is dome by subsequent calculation and
addition of these terms as controlled between step #4 & #8.

The results are the Cartesian components HAX, HAY, HAZ
of the m.m.f., gradient HA,

The total HA of the m,m.f. gradient outside the magnetic
body is calculated as the square root of the total of the sguares
of the three cartesian components HAX, HAY, HAZ at step #8.

These components and the totals are printed at the last step
before #9.
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AHX1
AHY1
AHZ1

AM(T,J,K)

CMNTIJ

CMNIK

CMNIX

CMNJK

CMNJY

" CMNKZ

HA

JP
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SUBROUTINE MAGFIA

SYMBOLS

magnetomotive force gradient in air at points XA,

YA, ZA outside the magnetic material induced by the
currents of the Helmholtz coil only; ampereturn per

meter

Volume constants of magnetic material, see P, 49

CMNJX = CMNIY = 2— SQS\Jr
AX 2
k of
CMNKX = CMNIZ = 2— C—‘l-s-gﬁf)—
r
A cos!ir?
X 2
r
= CMNKY = CMNJZ = - S98\JF
Ay 2
r
_':_&__ cOS r
Ay r2
A cos kr
27 2
r

total resultant magnetomotive force gradient;
ampereturn per meter

X, ¥, 2z components of resultant magnetomotive
force gradient; ampereturn per meter

X, ¥y, z components of the magnetomotive force
gradient at points inside the magnetic material;
ampereturn per meter,

number of points in the magnetic material in the
x direction; numeric

number of points in the magnetic material in the
y direction; numeric

d




e

KP

XA
YA
ZA

X (1,71,K)

number of points in the magnetic material in the
z direction; numeric

distance from a point inside the magnetic material

to a point outside the magnetic material; meter

coordinate of a point outside the magnetic material;
meter

Y(],J,K)coordinate of a point inside the. magnetic waterial;
Z (1,7,K))meter

XR
YR
ZR

X, ¥, 2z components of the distance from a point inside
the magnetic material to a point outside the magnetic
material; meter
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VI‘Test

Samples of magnetic materials of known properties
and geometries were to be placed in a known magnetic fleld,
The magnetic field modified due to the presence of the samples
was to be measured at several poinks at which it was calculated
by computer too, The results of tests were to be compared
with the computer output,

Apollo~Helmholtz Cpil-Pair ‘
The samples were placed in the geométrical center
of the Apollo-Helmholtz coll-pair available at Ames Research

center,

Each coil of the coil-pair 1is wound of 240 turns of
22 AWG copper wire, 15 turns in each of the 16 layers per coil,

The dimensions are shown in Figure l.

8,688 to 8,72 amperes electric current was specified
in the coil conductor,

The geometry of the Samples

The samples to be tested and the sequence of tests
were as follows,

1.,) Cube 0.,025,41 x 0,02541 x 0,025,411
2,) Parallelepipedon ,02528 x 0,02541 x 0,05081
3,) " n 0,025,42 x 0,02540 x 0,1016
Lh,) Square rod 0,02536 x © 0,025h2
5.) Round rod 0.02541 x 0,05087
6,) " " 0,025,40 dia x 0,1016

7.) " " 0,025h]; x 0,2032

g,) "= 0.02536 x 0,3810

The location of the samples relative to the Apollo-
Helmholtz coil-pair is shown in Figure 5,
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The materials of the samples

KOVAR was chosen as the material for the samples,
because this type of materlial 1s used in the spacecraft to
be investigated,

, Very 1little information was available for KOVAR,
Data received From the Westinghouse Electric corporation indicated

a permeability curve as shown in Figure 6,

The scarcity of the data available pointed to the
necessity of a permeability test. NASA sent samples of the
KOVAR to be used to the National Bureau of Standards, Washington,
D. C, for sach a test, The test results agreed with the curve
of Figure 6, and this curve was used in the caloulations.

Test~-results

The tests were performed by NASA personnel in the
Magnetic Laboratory at Ames Research Center, California,

The magnetic flux density was measured at several
points along the z~axis and the x-axis with Sample #1, the
Kovar~cube, :

The magnetic flux density was measured at several
points along the z-axis with the other samples, Fig, 7 shows
the results,

Field in air only

The field in air only was measured during the tests
and calculAted on an IBM 360/50 computer,

Table I, shows the results and the difference between
test and calculation, The greatest difference 1is 3,29%. The
difference increses with the distance from the center, and this
phenomenon may be due to two causes,

1,) The coordinates of points were computed by
starting from a poiht and adding the dlstance between two
consecutive points, This process has truncation errors
adding with the dlistance, The net result is an apparent slant
of the axis, along which the calculation proceeded, and so an
increasing difference of the magnetic field with the distance,

2.) A physical slant of the axis could have been
present at the test, because the magnetometer was traveling
on rails, suspendéedas cantilevers in the center,s The weight

of the magnetometer could have caused a deflection of the
cantilever~beam,

3 N




dVAOM 40 ALITEV3INY3d 3AILVI3Y

W/ NYNLY3dWY
L {0l X9 < b € 2 Ol X01 €0

‘rj/ .

i 0002

m -F000¢€

m -004¢
0100} 4

73

Figure 6




Table T.

Magnetomotive force gradient H, of the Apollo-Helmholtz
coil=-pair,

1.) Axial scan, along the z-axis
x=0, y=0
z, meters H, Amperturn/m Difference
from center from test from calculation Ampt/m %

0 1993 2002 +9 +0,45
0.2 1993 2000 +7 +0,35
0.3 1955 1970 +15 +0,75
0. 1872 1885 +13 +o.69
0.5 1738 17&5 -7 -0,.40

2.,) Radial scan, along the x-axis
¥=0, 2z=0
x,moters Hyx Amperturn/m : Difference
from center from test from calculation Ampt/m %

0 1995 2002 +7 40,35
0,2 1395 2000,5 +5,5 +0,28
0,3 1972 1978 : +6 +0 430
0.l 1935 1905 =30 -1,58
0.5 1746 1735 -11 -0,63
0,55 1605 1595 ~10 -0,63
0.6 1421 1415 -6 -0.25
0.65 1223 1192 -31 -2,
0.7 978 L8 =30 -3.16

Test results in gauss were multiplied by 79,579 to have
Amperturns/meter,

Tield of Kovar-samples

Only a very small distortion of the field in the
order of the fourth to sixth decimal occured when the Kovar
samples were Introduced,

A reasonable accuracy of the tests were achieved by
measuring not the absolute fleld but only the difference,
that 1s the distortion, This was achieved by setting the
magnetometer to zero in the full alr-fleld before the Kovar-
sample was introduced,

Similarly, the calculatlon was made only for the
difference, by setting HAX, HAY and HAZ to zero in Section

h
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TIT, the MAGFIA-programm,

Successful test and calculation was performed for
a cube, a short c¢ylinder and a sphere, The results are
shown on Figure 8, 9 and 10,
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VII. EVALUATION OF THE COMPUTERIZED CALCULATION

Section I and ITT

It was established beyond doubt that Section I, and
IIT 1s valid and works perfectly. This means that the magnetic
fleld in air, Induced either by a current system or by a
magnetized body can be calculated with a ¥ery high accuracy
1f the current-system and the magnetization of the body 1is
known,

Section II
The same can not be said of Section II yet.

Section IT can be evaluated qualitatively and
quantitatively,

Qualitatively, good results were achileved,

For Instance, the flux~lines of the m.,m.f, gradient,
H are diverging from the sample towards the air, as they should
be. ‘ . .

The m.m.f, gradient shows not only a decreasing trend
with increasing distance from the sample, but also the ratio
of the decrease 1s 1n agreement with the tests, In other words,
the trend of curves showing the m.,m,f, gradient, H, as a function
of the distance from the sample agrees with the test, see
Figures 8, 9 and 10,

Qualitatively, Figures 8, 9 and 10 show also a fairly
good agreement of calculation and test, but not good enough,

Section II needs corrections also because it seems not
to work well if the fleld of the current system is uniform and
parallel, In such a case, and this was the case In all examples
considered, the directional partial differentials of the relative
permeabllity, and the field in alr tend to go to zero, These
are URX, URY, URZ and AHXX, AHYY, AHZZ in the PHICAL-subroutine,
The zero value of these quantities makes B(IA), the right side
of the equations zero, and this makes the equations homogeneous,
with a singular AMA matrix , which can not be solved, This
happened fast whenever a solution was attempted by taking more

than eight points in the ferromagnetic body, and also when
PHT was not assumed zero in the air,

The iteratlion process in the DIPOLE programm must be
investigated further too, It seems thatthils iteration diverges,
and diverges very fast when more than eight points are set up
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in the ferromagnetic material, This divergence accelerates if
PHI is taken not equal zero in the air, which can be explained
by the matrix AMA going singular as explained above,

It seems that the best agreement with the test was
reached by not using iteration at all, but reading the
permeability from the permeabllity vs. H curve for the H
derived from the current-system in air and using this value
of the permeabllity in calculating the dipole strength of the
ferromagnetic body. 0f course, all cases investlgated were
cloge to saturation, It was proposed to investigate cases with
less saturation, but time did not permit 1t. Such cases should
be investigated very definitely, and particularly in the neigh-
borhood of the peak of the permesability-curve,

One should also try to use an equation for the
permeability vs, H function, and use this function in the main
equation, then solve them for the magnetlic scalar potential,
This would involve rather complex equations, but would dispense
with the iteration,

Though Section II does not work reliably and too well
in parallel flelds it 1is expected to work well in non-uniform,
non=-parallel flelds, and it should be tried in non-parallel,
non«uniform fields. Such an investigation will narrow down
the region where corrections are needed,

The machine~times logged are listed in the Table II

below,
‘ Table II
. machine-time in minutes for section
Sample No, of points T 1T ITI ~ Total
19 the sample o ¢), pts, for for 15 pts.
Rod 2x2x2=8 | 13,09 | 4 ITER, 2,80 | 1.85 17.6l
10 ITER, 2.83| 3.62 19.54
Sphere 2x2x2=8 12,31 5 ITER, 2.23| 6.45 20,99
Cube 2x2x2=8 12,31 } L ITER, 2.,38| 1,76 16,45
Cube 5x5x5=125 25,2 —_— —_— —
4
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VIIT, PROPOSITION FOR CONTINUED INVESTIGATION

Reference is made to the end of the previous chapter
listing some propositions for the completion of the present

work, Further propositions are as follow,

- The solutlon of differential equations by linearizing
them and using finlte differences-what thls work in essence
was~has an inherent error due to taking finite differences
instead of a continuum,

The error 1s the legs the greater the number of the
finite differences 1s but a great number of finite differences
means to have a great number of linear equations with an equally
great rnumber of unknowns and the solution of this voluminous
set of equations requires excessive computer~time and memory,

One hardly can speak sbout an optimization in this

problem, Optimization would mean to find a balance between
tolerahle errors and computer~cost, Here the computer-time is
1ncreasing 80 rapidly and the memory-space 1s outrun already

’iith TS MnSThsT WUPRELRC 1o 88y shoe] Snggsaiﬂdgdt%%tgu%tignx 2

r5x5x5 blocks each block representing a "finite difference"

ﬁhe number of which is clearly inadequate for any appreciable
accuracy for a body beyond the size of very small laboratory samples,

Furthermore, whille accuracy can be defined as the
per unit difference between the calculated and the real value
of the m.m.f. gradient at a polnt, the value of the accuracy
1s rather dubilous, unless the calculation is repeated several times
each time increasing the number of finite differences, and an
asymptotic approach by the values of the resulting values of
the m,m.f. gradient can be figured out,.

In order to make the developed process more useful,
-indeed useful at a8ll if the fleld of a whole satellite 1s
desired~ a two-step extension of the work done so far is
proposed, as follows,

1,) Investigate ways and means for a better adaptation

- of the developed method for bodies of sizeable dimensions,

One 1s inclined to investigate not so much various mathematical
modifications but rather othﬂ*ayproadhes, like the exploitation

of symmmetries, some kind of a "zooming techni ue", by which

1s meant to start with a very small number of "finite differences"
then divide and subdivide each of those in always finer parts,

etc, Several of such approaches look promising amd new ones

may emerge during the work as 1t almost always happens in research.
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Mathematical modifications of the developed method
are not promising, simply because there are none which could
be used, This a common plague of such processes today snd
a serious limitation to the use of computers,

The propositions made at the end of Chapter VII fall
into this category.

: 2.) Investigate the accuracy of the calculation, and
try to develop a process to predict how many of how fine
"finite differences" are required to have a predefined accuracy,
The prediction may be based on two or three computer runs with
very low number of finlte differences, and as such rather
inexpensive, Preliminary investigation revealed certain
regularities of the "accuracy against number of finite differences"
curve ard this proposal 1s basdd on this observation,

Undoubtedly, the step propesed as the first one is more

“Important in view of practical use, but the second can not

be neglected elther,
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APPENDIX T,

THE DEVELOPMENT OF THE ANALYSIS OF THREE-~-DIMENSIONAL AND STATIC
MAGNETIC FIELDS IN THE PRESENCE OF BODIES THE PERMEABILITY OF
~WHICH IS A FUNCTION OF THE FIELD.

After several futile attempts during the years of 1963-6
it was concluded that the only fundamentally sound approach is
to solve Maxwell's equations as they apply. (086-150-225,
March, 1966)

The Maxwell-equations for static fields and at a point, n,
where no real current is present are

RN
v.B = 0O
n
-
W\(H = 0
n
B o
n M n

It was reasoned that these three egquations can be solved

-— b
for the three unknowns, Bn’ Hn and u.

N .
From o.B O follows that the mormal component of B is

n
continuous,

O follows that the tangential component of

L}

—
From van

H is continuous, (Slater, Frank; Electromagnetism, p. 71)
1.) Elaborate calculations were performed for the solu-

tion of these equations, however an error was made in the
mathematics '

A\
r

A
mn A mn
5 ) # hm. (‘7 . P) )

T r
mn mn

|

e
0 (3,

2.) The error having been corrected, the equations for
the solution looked hopelessly complex, because second partial
derivatives appeared now.

-
The real trouble was however, that H was written as the
gradient of a scalar potential (086-150—15ﬂ, fully justified



-
here, but resulting in an identity of the equation wan =0 ,

because the curl of a grad., is always zero., This "equation"
is therefore, always satisfied in the analyzed case and it is
useless for the required solution. (097-057, Sep 2-24-67)
(097-051, equ. 7, Oct. 3, 67)

The original idea, to solve the three Maxwellian equations
seemed to be paralyzed, unless some other approach could be
found,

3.) 1In an attempt togo around the difficulty, it was
reasoned, that a vector is known, if its div., and curl are
known. Then B being a vector, it would be necessary only to
express its div, and curl by known gquantities from the basic
three Maxwellian equations., (097-046, -97-058, Sep. 24, 67)

The div, and curl of B were written accordingly.

v.B (097-066, Sep. 27, 1966)
vyB {(097-051, Oct. 3, 1966 ) .

i
and it was shown, (097-060, Oct. 3, 1967) how can B calcu-
lated then.,

v The reasoning was continued by stating that the div. and
curl are known if all components of these quantities are known,
These components are the mnine first order partial derivatives,

In order to find the nine partial derivatives of ﬁ: the
six, figuring in the curl , werg expressed in terms of 4 and
of the Cartesian components of ﬁﬁ (097-061, -062, -063, Oct.3,
1967) and also (097-071, -072, -073, Sept. 7,8, 1967)
These expressions in their turn and gf course, required =
H to be expressed by some known values., H was expressed by
the field of real currents and by the dipole moments induced
by this field in the magnetizable material in the original =
write-up (086-150-153)and could be taken from there,

-
Of course, this procedure resulted B g8 a function of
the independent field, the induced dipoles, and u-s. The
remaining three partial derivatives

AB AB oB
— A 7
X 3y AZ

—
were written from this expression of B as functions of the field
of the currents, the induced dipoles and u-s. (097-065, Oct. 3,
1967),(097-074, Sep. 9, 1967)
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The resulting equations for Bx,'By and B_  were, of

course, scalar and not vectorial equations. This observance
gave the idea that only scalar quantities should be used. This
is quite self evident by now, and it is surprising why it was
not seen before.

As a byproduct, (097-066, sh, 1, Oct. 3, 1967) it was
—t —
shown that if ¢.B = 0, then ov.H = 0 too.,  This result gave
e , .
an expression for v.H = 0, and as it was proven previously

- et
vxH = O is always satisfied here, it was attempted to use
v.B = 0 (097-066, sh, 2, Oct. 3, 1967) as a function of H_,

-

Hy, HZ and U, derived from these equations, Then the H~com-
ponents appearing in the expressions of '§' were lumped with
real constants into terms parametric in ﬁ: by which manipula-
tion a set of first order partial differential equations was
reached for and K. It was thought to solve them by linea-~
rizing them by numerical approximation - an idea maintained in
the final solution,

Unfortunately, the set of equations to be solved, turned.
out to be a set of homogeneous equations -~ which could be solved
only for the ratios of iU~ s, and even so only if the determi-
nant of the set and at least one minor was zero — and this is
not the case generally., (097-066, sh. 4, Oct. 3, 1967)

Again, the ﬁlcomponents were not known in the equations for:
B, and so these eguations were nothing else but the B-components
as functions of ﬁtcomponents, where both B and H-components were
unknown, So, theqs_were now not only three unknqus, but six,
the three unknown B-components and three unknown H-components,
a total of six unknowns, in only three equations. '

4,) Several attempts were made to find four independent

equations when, during the described work it was realized that
the unknowns to be found really are Hx’Hy’ Hz' and .

One such attempt formulated four equations as follows:

2 2 2 2 2 2
ud&x + Hy + HZ = V/BX + By + Bz (1)

—
and the B-components on the right side were written in terms of

e -
the ﬁ?components derived from vxB = O and wvyH = O, (097—060,
October 3, 1967).

v.B =0 (2)



-
the div B expressed in terms of partial derivatives, the
latter ones again expressed in terms of the H-components.

(097-064, Oct. 3, 1967)

V.ng = 0 (3)

was written becaﬁse_the divergence of any curl is zero, (097-
076 through -78, Sep. 9, 1967)

2 2 2
u_fJHx+Hy+Hz | (4)

The magnetizing curve.

Unfortunately, again, equ. (3) turned out to be an 0 = 0 iden-
tity because the curl of the field of currents is identically
zero. (097-078 and -079, Sep. 9, 1967). This killed that
scheme,

Of course and of same reason a proposition to calculate
not W, but u, from that equation (097-081, Sep. 11, 1967) did
not work either.

At this point it was also observed, that one difficulty of
such a proposition was also that T is not a single valued func-
tion of u.

-

Only u is a single Valugg function of H, This observation
pointed out that not pu, but H must be calculated first; then u
can be read from the magnetization curve of the material.

5.) ??appeared always in the form of its three Cartesian
components. A survey of the work done revealed (097-098, Sep.
15, 1967) that equations between these three Cartesian com-
ponents and the permeability, p,were already developed (097-

064-3x,3y,3z, and U4x1, 4yl, 4zl). So why not try to solve these

equations for Hx’ Hy’ HZ keeping u as a parameter (097-090,

Sep. 15, 1967). This seemed to be possible, because that was
a set of 3p equations for 3p unknowns, Then.use the result-

. N . .
ing - ﬁ‘ in the ©v.B = 0 _equation and satisfy Maxwell this way,
ombine this form of v.B = 0 and the magnetizing curve
B = uff, where again # is the resulting from the above
3p equations and it is in terms of |, and solve the latter
two equations

i

v.B = O
= —’
B = uH

-
for H and u(097-090, -091, -092, Sep. 1k, 1967)
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When the determinant of the ﬁiequations was investigated,
t was felt better to use the magnetic moment, M, instead of
H (097-088, -089, Sep. 13, 1967) (097-091, Sep. 14, 1967) be-
cause it may yield simpler expressions.

It should be noted that the v.ﬁ'= 0 equations are homo-
geneous, and therefore, the magnetizing curve is not one equa-
tion too much, but needed for the solution (097-094, Sep. 2k,
1967; 097-095, Sep. 30, 1967).

This reasoning and the algorithm looked to be in order,
butfrom the fact that the magnetizing curve can not be expressed
by an algebraic equation difficulties arose. Algebraic ap-
proximations like the Frdohlich-equation, though considered
(097—095, Sep. 30, 1967) proved neither accurate enough, nor
practical,

At this point it seemed that a deadlock was reached.

6.) It seemed that at least there were some useful by-
products developed. Such were expressions for the Cartesian
components for the partial derivatives, and fopathe divergence
and curl of H and B. Cartesian components of H 097-064, sh,

-
1-2 (in terms of magnetic moments) Cartesian components of B
097-06L4, sh, 2-3. N -
Partial derivatives of B in terms of H and M.

v 0 097-061, -062, -063, -06L4, sh k-5, -065
097-066 sh, 1 097-127
v.B 097-066 sh. 2-4 097-126
—
wyH 097-057, sh. 9 (also 097-051-7 equ.)
097-127 !
- ‘ .
vxB 097-051 through -055 and 097-079,097-126

- — —
The calculation of B from ¢,B and vvB 097-060,

Many details of these calculations were saved and used
directly in the development of the final solution,

7.) The "breakthrough' came with the recognition that
the scalar quantities for which a solution can be found are
not the three Cartesian components of and the u, but they
are the scalar potential, ¢, and i, that is only two scalar
quantities (Sep. 30, 1967), see (097-094 sh. 10, and 097-096).

This was recognized by observing that the scalar potential
was everywhere present in the equations though sometimes hidden.
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8.) As, the next step, and as H = wg, the Cartesian com-
ponents of Il were written as first partial derivatives of ¢.
For instance Hx = ﬁﬁ. and so on, The result was a partial
differential equation for ¢ and u. (097-097, Sep. 30, 1967).

9.) Then the partial derivatives of ¢ and y, were ap-
proximated by a linear approximation (097-098, oOct., 3, 1967).

10.) While first the ﬁicomponents on the right side of
the equation were maintained and caused difficulties, finally
all -5 were replaced by partial derivatives of P In doing
this, the following was observed.

a.) The second order partial derivatives of ¢ could be
expressed by the first order partial derivatives of ¢
and by geometric relations,

b.) The derivatives must be specified carefully as far as
their location in the space is concerned (derivative at
n or m, see sh, 15, 097-099, Oct, 11, 1967).

By this a mathematical solution was reached and completed.

11.,) Quite some more work was required to reduce the
theoretical solution to practice..

a.) There are a number of constants to be calculated in
the equations, These constants were expressed. (097-099,
Oct, 11, 1967, 097-101, -102, Nov. 8, 1967).

b.) Simple examples were sketched to see if the mathema-=
tics can be really applied (097-103, Nov. 11, 1967; 097-
114, Nov. 25, 1967),

c.) The equations were checked regarding their feasibi—.
lity for computer-language (097-110), o

d.) The algorithm was sketched (097-111, Nov. 25, 1967).
This pointed out the necessity of careful indexing.

12.) It was recognized that the only ‘great difficulty
remaining is the solution of a large number of simultaneous
line?r equations. (097-104, -105 Nov. 11, 1967; 097-117, Oct.2
1967).

It is realized that the size of the computer-memory and
the length of the computer-~time are the limiting factors in
the application., Further work is much needed in order to im-
prove the computer-technique. There are some tentative ideas
for that purpose,
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e.g£. a zooming technique (0974106, Nov. 19, and 22, 1967)
exploitation of symmetry(097—112, Nov. 21, 1967)
a block-iterative approach(097-118, Dec. 5, 1967)

Some doubts arose in the correctness and how to calculate

in points on the boundary between iron and air. This was clari-

fied (097-115, Nov. 25, 1967).

13.Y It was also clarified that the solution dissolves
itself into three major steps:

Y

1.) Calculation of °H_, the m.,m,f, gradient due to
electric current in all points of the space, and
neglecting the presence of iron, This was shown in
Paper #4 at the II International Conference on
Magnet Technology in Oxford, England.

2.) The calculation of ¢ and U at points in the
iron (097-099, -100).

-
3.) The calculation of the m.m.f. gradient, H in

points outside the iron but considering the iron,
(097-108)

The really complex part is Step #2. It is the intention

to solve it by using a main computer program and geometrical
subroutines.

First, simple cases, like a cube, a rod, etc, will be
handled by direct solution of the set of linear equations,
This will be checked against test-results,

If the first calculation proves to be right and also if

the computer-program is debuggeed, then more complex cases will
be solved by additional techniques.

Finally, the accuracy of the calculation will be checked.



APPENDIX II

At points where is no current:

T=0 (057-4k)

and for static problems
-
aD
At 0

(057-45)

One of Maxwell 's equations is

=

-
= J

>
oxH -

o/
o+

(057-46)

A combination of (057-44, 4%, 46) results for static problems
and for points without electric current
N
vyxH

= 0 (057-47)
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APPENDIX III.

The expression in equation 155~5-2,
as follows:

~ A e
h .r A r
ol A_mny _ o (h . 22
2 - m 2
r r
mn mn

-

3
Recall for any two vectors, E and F.

(IR Y — «
n(E.f) = (E-w)? + (?FV)E + i&(vig) + Fx(vxﬁ)

Use in the above equation

T
= . - mn
E = hm H F = >
r
mn
- - = N
Then (F«9)E = O as vE = O

O46-2, can be developed

§155-5~2)
046-2)

%155—5—3)
046-3)

(155~-5-6)
046-6)
155-5-7)
046-7)

§155-5-u.5)
oL6-4,5)

-l
and v{ﬁ = 0, because all partial derivatives of E at n vanish

= 3
E = h_ being a constant at n. With this nomenclature §155~5—2)
m
oLk6-2)
becomes
A T T A 2
: A
nin mn
olh -2 = (h .v) —— + hxlox - (155-5-8)
m- 2 m r2 m r2 6-8
Tan mn mn (Oh ~-8)
\'—W"‘/
scalar vector
\—————V-__.—J \'—“W—‘./'

vector vector
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The first term on the right hand side of this equation can be
developed as follows

?ﬁn 2 cos(irmn) A cos(jrmm) N cos(krmn)
5 = 5 +y ———p— +k {125-5-9)
mn Tmn “mn Tmn Oh47-1)
”
h .v= cos(ihm) %; + cos(jhm) g; + cos(khm) %; 2155—6-1)
_ 047-2)
A ;
A T A cos(ir_ ) cos(ir_ )
(hm.v) 5 = i cos(ih ) &_ —~———~%ﬂ— + cos(jh ) a zmn +
mn ‘o fmg .
cos(ir__) ~ cos(jr )
+ cos(kh ) %; 2mn + cos(1hm) %; 2mn +
ey -y m o ad e . mn .-
cos(jrmn) cos(jr_ )
o mn
+ cos(jh_ ) 5 2 + cos (khm) S 5
ML e e ey m_ .-
cos{kr_ ) - cos(kr_ )
A ol
+ k [COS(lhm) 5% - gn + cos(ghm) %; - 2mn +
""c"u""o"’a"‘o"n“"o"‘a"?l!'lo"o“" "o-n"o"o“o"b-o-mgo"o"'o
3 cos(krmn) ‘
+ cos(khm) 5z T A t155-6-—2)
: ron 047-3)

and the second term on the right hand side of equ.(0h6—8)can be
developed as follows:

i J k
A
“mn 2 A a_
TXTTTZ T 3x 3y 3z = (155-7-3)
Tmn (0“8*1)
cos(irmn) cos(jrmn) cos(krmn)
2 2 2
ron on Ton

S

%
:
i

¥




A(B._. cos(jrmn) A cos (irm)
3 x

2 3y . 2 §1s5~7-u)
wn wn o48-2)
\_’//\
6’\’/
) : A
A |
h x [vx 2.)= cos(ihm) cos(jhm) cos(khm) =
“mn
A B c .2155~7»5)
048-3)
= ’1\ Ezos(dhm)c - cos(khm)B] + {j\ cos(khm)A - cos(ihm)cj+
R [;os(ihm)B - cos(Jhm)Q] 232§~Z;6)‘
A cosfjr ) cos(ir_ )
= i [;os(jhm)si -———;552- - cos(jn )2 —-—;§+95- -
mn —e™ s e e e~ s " s "ML s ~ s
: cos(ir ) cos(kr_ )
i nn A mn
| - cns(khmw);"' —-—:2'—*'*** + cos(khm);; W:’z*-] +
U S | wn
- cos(kr_ ) s{4r_ )
+ J I_ooq(khm 2——}-; M M. - cos(khm %—i A
rmn "o"o"o“o"o"‘o"{‘m‘,"’o—o“
cos(_jrmn) 3 cos(irmn)
- °°s(ihm)ax r;n + cos(ihm))g—}-; 5 +
TeTe T e™e" hadUi ° = mrn -
cos(ir ) cos(kr_ )
| + k[gos(ihm)-z-; 3 LV cos(:l.hm %; 5 m_ .
§ - mn "o“o"‘o".""o‘."?m-."o
cos(kr ) cos(Jjr_ )
- cos(jhm)g—}-; > + cos(,jhm)%; 2mn
~0“0"o“o';a'“o“o omn"‘o"‘ rmn (155—7-'7)
(ot9-1)

I1II-3



The equation (155-5-2) (0O46-2) is then in a more developed form

and by combination of (046-8), (047-3), (049-1) as follows.
that the terms dash-dotted underlined in equ. (047-3) and
(049-1) cancel.

A

A cos(ir__) cos(gr_ )
V(ﬁn.;ﬂn-a)= ? Gos(ihm)g—x -—;—-‘2—@&— + cos(Jhm)g'; :n
mn mn mn

cos(kr_ ) | cos(ir )
+ cos(khm)g-; - ;m] + ?Eos(ihm)g? } 2m1
mn

r
mn

cos(jr_ ) _ cos(krmn)
+ °°S(Jhm)§; 3 + 008(khm)§; —‘—:—~§*~
um mn

cos(ir ) cos(Jr )
+ ‘1?[(;08(1}1 )a— —ee 2 + cos(dh )a—- S 1

m'Az rmnz m'yz rmn2
cos(kr_ )
+ cos(kh )d— — WO 155-8-1)
waz L, 2 0k9-2)
; . on

III-4

+

Note




APPENDIX IV

The Mathematics of Forming n.ﬁLO Equation in Terms of mand u

Use partial derivatives of ~ for the components of H as
shown above. (155-5-1, OU46-1)

Linearize, expressing the first partial derivatives of =8 by

differences.,

amm _ 1lim m(x + Ax1Ynz) - m(XQYnZ)
3%~ Ax-»0 AX
m
o~ "(xm+lymzm) B m(xm—lymzm) gggg-gig
- X -X -
2 m+1l "m-1
i
i
%
- iiﬂ - lim m(xvy + AY’Z) - M(X1sz)
, Ay - Ay-»0 Ay
] m
o O ) = Catars fo00-er)
o 2 ym+l ym--l
R 2
|
% s
= _:ﬂ - lim o(x,v,2z + 2z) - o(x,y,2)
Az~ Az->0 AZ
m
- Y wPme) = oY) %099—6z)
) Ze1 %me1 098-1z)
2

TV-1



Expressing the first and second partial derivatives of the
terms containing the cosines and the ron™S in equ.(099-5x,y,z)

and(099f10xx,yy,zz)

. _ cos (irmn)‘. N xn....xm
mnixz_ AX R2 - Ax . %
( 2 2 "z 2
xn-xm) +(yn_ym) +(zn'zm)
= (xn—xm) [— % &Exn—xm)z ;(yn_ym)z *(zn—zm)%} 2(xn—xm) +
. 1
2’»
2
[(xr;xm)z +(Yn’Ym)2 +(zn—zm)2] &
Cxg)® ex)® ey +(z -2 )% |
[ ]
) —2(xn-—xm)2 +(yn'ym)2 +(zn~zm)2 _ Rr? —3(xn—xm)2 wé
‘% Rs T
2 o
ﬁxn—xm)2 +(yn—ym) +(zn~zm)2 (130-1) "
Similariy
2
. ) (x_-x.)° -2(y_-y)? +(z -z )% _ R® -3(y_-v )
‘mnjy 5 RO
: |
[(xn-xm)z +(Yn-ym)2 +(Zn"'zm)2] (130-2)

{
Y
¢
:

V.. D



and

e o e L L
mnkz ' 5 5
. | 2 R
Exn-xm)2 f(yn-ym)2 +(zn-zm)%] (130-3)
3 Yn"Ym
cC_ .. =
mnjx ?gxn 2

- 2
Exn-xm)z +(yn"ym)2 +(zn-zm)%}

]

(Yn'ym) »{_ % \:(xn-xm)z +(yn.'.ym)2 +(zn-zm)2] 2(xn-xm)

3 gmxy) () 3 mx ) (v -y
B 5 T 5
2 R
2
Exn-xm)2 +(yn—ym)2 +(zn_zm):} (130-4)
Similarly
c ) 'B(Xn-xm)(zn”zm) _ -3(xn-xm)(zn_zm)
mnkx » ~g . 5
(x=x)% +(y -v)? +(z -2 )2] R
[ n m n “m n" “m (130-5)
NOTE: :
C = C - *n"*m _ -B(Xn-xm)(yn-ym)
mmiy -~ “mnjx AV, 3 | 5
2
RZ R
(130-6)
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Similarly

and Coiiz © Conkx (130-7)

e =3 gy ) (2 -2))
mnjz = ~“mnky 5

2
[(xn-xm)2 sy -y )? +(zn-zm)%

and C

(130-8)
Now consider second partiéls
c N 2 cos(irmn)= a2 x =X | 3
onixx axnz Rz aXﬂz . %
Ex -x )% +(y -y )% +(z -z )ﬁ
n m n 'm n m
-2(x_-x )2 +{y_-y )2 +(z_~z )2
_ 2 n_m n°m n ‘m
Ax, ‘ 5
: 2 2 2 2
(x-x )" +(y =~y )" +(z -z )
_ 2 2 2]y 5 Y 2
= YfZ(xn—xm) +(y ~v.) +(zn-zm);) -3 ‘kxn x)" +(y ~y,)T 4
7
2 2
(znozm);} 2(xn-xm{] +
+ 1 T -h(xn—x )}
2

S’



) -S(xn-xm) ‘Ez(xn—xm)2 +(yn-ym)2 +(zn-zm)f]-lt(xn-xm) [(xn—xm)z

oy )? +ama)?]

E )% 2 2
O AR |

i bix -5)2 oy, -v,)? -9(zn-z,,,)2] (x,-%)

Z
2

[(xn-xm)2 +(Yn—ym)2 i(zn-zm)%]

bstxp-xg)? -9 #2] (x -x))
= 5 , (130-9)

] °

Similarly
2 2 2l
. a2 cosUmy) gy [-9 G -x) 246 (y,-v) -9(zn-zm>]
mn jyy aynZ R2 %
[(xn-xm)2 +(Ynfym)2 +(zn—zm)%]
(130-10)

,2  coslkr, ) (zn-zm)l}9(xn-xm)2-9(yn-vm)2+6(zn—zm)%]

C = =
mnkzz 2 R.2 Z

Hzn
R RN R T

(130-11)

?,2 (cos(,jrmn)— L" —3(xn-xm) (Yn—Ym)
mn jxx 2 2 T dx

B 2
‘_(xn-xm)2 +(Yn-vm)2 +(zn—zm)%z2
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2
- B(Xn" xm) (Yn'Ym) [“ ‘g &xn-xm) 2, (Yn*Ym) 2, ( zn—zm)a 2( xn-xm)}

-3y -v,)
(3,202 +(r, 77 )2 +(5-2)7
+15(xn~xm)2(yn-ym)-3(yn—,ym) [(xn-xm)?' +(yn~~ym)2 +(zn-zm)2]
) ) 7
2 2 2 2
}:(xn-—xm) +(yn-ym) +(zn—-zm) ]
(v vg) [12(x_-x)% -3(y -y )? -3(zn-zm)2]
i 7
2 2 2 2
[(xn“xm) +(Yn'Ym) +(zn-zm) ] | 3
]
- 15(x -x )% - 2 b
e [5; 5 -3 R o A
c - a” cos(krm): d -3(x,mxy) (22, %
mnk xx 3 x 2 R,‘Z 'axn 5

2
[( xn-xm) 2 4 (Yn-ym) 2 o zn-zm) 2] 3

(z-z) [12(x -x)® -3(y -v,)? —B(Zn-zm)z}
N Z

| 2
[( x -x)% +(y -y )% +(z_-z) 2]
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- L 5 (130-13)
R :
c = 5———-2 eos(ir_ ) = 3 -3(xn-—xm) (yn-ym)
mniyy aynZ mn A RO

(x -x) [-30x -x )% v12(y -y )? -3(z -2 )%

: (o5 o0 "z,

x -x ) ls(y_-y )% -3 R®
RN [ (y§7ym) 3 R? |  soutn)

| . 2 2 cos(krmn{= 5 *B(Yn-Ym) (zn-zm)
” l mnkyy 3 2 R2 AY
i y'n

n R5

3 (zn‘zm) [-j(xn-xm)z +12(yn-ym)2 -3(zn~zm)2]

Z
2

[( x =x_) 2, (vy,=vy) 2 z -z ) 2]

(z -z ) 15(Yn'ym)2 -3 Rz:]

(130-15)

. 32 cos(irm‘n) -3(xn-¥m) (Zn"zm)

5
3z, | n R

TV-7



(x -x_) EB(xn-xm)2 -B(Yn-ym)2 "12(2;%)2]

Exn-xm)2 +(Yn~}'m)2 +(zn-zm)2] %

(x_-x_) ES(Z -zm)2 -3 R2]
n___ L = (130-16)

i i2 cqf(jrqu N 'B(Yn'ym)(zn"zm)
mnjzz azn2 R2 axn

RO

(v,-v,) I:--B(xm--xm)2 -3(y,_-v,)° +12‘(zn-zm)2] |

Z
, 2
[(xn-xm) 2 sy v)? +(z -2 ) ZJ

(yn-y@) ls(zn-zm)2 -3 RZJ

| (130-17)
o7

All derivatives calculated are numerically defined in a certain

problem, They can be considered as constants and denoted by -
the C-s as shown above,

Now express the first partial derivatives of Mo

AU o (x

rn rn n+1ynzn) —urn (xn-lynzn) 2098-3x)
= - = U 099—87()
3x x -X nx
n n+l "n-1
2( 5 )
¥rn = Hrn (xnyn+lzn) —urn(xnyn~lzn) = U gggg:gz;
3¥n Yn+1 Yn-1 ny
p (-l Tn-l




-
}
4
o

Y
!

AMrn _ urn(xnynzn-rl) " urn(xnynzn--l) - U »
Azn - 2 41”7 : T Tnz (098-3z) (099—82)

2( > n-1 )

Write the here calculated values of the partial derivatives into
(099-5x,y,2).

The result is:

a?n - _ on 1 p v (u - 1) ?(xm+lymzm) B T(xm—lymzml
Ax, nx b meyp Wrm X el *mo1
m#£n
m(xmym+lzm) - ?(xmym—lzm)ﬁ
- + (¥ +
mnix mnjx
Ymel Ym-1
. m(xm m m+1) - m(xmymzm~l) c
“m+l” %m-1 mnk x (099-9x)
mﬁ'/}n - .0 - :].'... ; v (Ll - 1) :p(xm+1ymzm) --(P( m- ly z )
Y, ny 4 el W Tm X el Xme1 mniy
m#n
' T(xmym+lzm) - ¢(x Y -1 m) c +m(x m m? m+l) ((x mY m” m- l) ]
Yms1 Ym-1 | mn.jy Zm+l” %m-1 Cmnley
(099-9v)
ST SR LG Sl CRIVAR)
Az nz Ln moyp morm Xmel *me1 mniz
m#n
.\ m(xmym+1zm) '"(xmym-lzm)n N p(x m’ m” m+l) ki (xmymzm;l)n
C . - 5 L9
Y1 Ym-1 mnja Zm+1” %m-1 mnkz,
(099-9z)
.aun af‘f‘
Build the product: ;o— I~ using (099-8x,y,z) and (099-9x,y,z).
1
Denote Vm(“rm‘l) = A

TvV-9



~10

xn+1ynzn) + ur(x

W}

o]

aLln k) Pn ”X ( xnynzn)
AX AX = X -X ur

n n n+l "n-1

P

- L A {h (% 1YnZn) ~4{x 17,2

m+1

mEn

‘mnix

{f o
X -X
n+l "n-

1)(xm+l-xmfl)

Cc .
mu jx

+
(xn+]~

Xn«-l)(ym+1-'y

mnl)

. oy Ot - Caua)]
*ne1"*n-1/ VPme1"%me1’ L m”m “m-
(099-9x1)
(o]
igﬂva¢n - °H (xnvnzn) u (x y 2z ) H (xnynzn) no(xy 2z )-
Ay, MW, Ynel Vn-1 n"n+l n Yoi1 Yn-1 r'’n n-1n
P
) mgl A {H (x n'n+1 n) " Mr'(xnyl’l--lzn)}
m#n
Cmniy [
- (x 2 ) - plx z ) +
- - (X 1Y mZ 1Y
{ (yn+l Yn—l)(xm+l xm-l) m+17m7m P ' m-1"m"m
Congy o ) - o )
+ - — (p;_x v A - (P Xy - 7, +
V1 Yn-1) Wne1 V1) |7 mmeltm m” m-1"m ]
Cmnky - ' : -
* (x vz ) - olxy z )|t (099-9y1)
(yn+l"yn_1)(zm+1°zm~1) L? m m m+l ' n’ m“m-1 |
Al A “n OHZ ( xnynzn) OHZ ( xnynzn)
xz Az Tz - “r(xnynzn+l) * 7z -2 u(xny Zn—l) -
e n+l “n-1 - “n+1 " "n-1 ¥ n

3

-

o)
Hx(xnynzn)

z
X ~X 1yn n

Nne~
n+1l

n-1

.V(xm+1yﬁzm) - ¢(xm_lymzm)] +

?(x m m+1% m) (xmymnlzm)] *




i
)

i H
Hpmninsanion

p

- mfl AL {u (= n'n? n+l) - My (x nYnn- 1)}

m£n

mniz

Cc
{(zn-rl"zn-.]_ ) (xm_’.l"xm_lj[‘?(xmi-lym.zm) - ‘P(xm-—lymzm)] +

Cmnjz f

1Y) 5

* 1= c"(Axmym+lzm) E w(xmymnlzm)] *

-
n+l n

Cmnkz

' _
(zn+l_zn—l)(zm

1) q(x m’ m? m+1) - ¢(xmymzm_l)] (099-9z1)

-
+1 “m-

Note that Am contains urmrl).

Lump the constants in (099—9x1,971,9z1) except the u-s.

au B?n ,
Axn axn =T Knhxur(xn+lynzn) * K onxMr (x n? ) -
P
- mgl '{Kmnix[yr(xn+1ynzn) - ur(xnnlynzn)] ¢(xm+1ymzm) -
m£n

-

- Kmnix[Jr(xn+lynzn) ur(xn~lynzn)‘ ?(xm-lymzm)

+

Kmnjx[ur(xn+lynzn) ur(xn-lynzn)‘ @(xmym+1zm)

- Kmnjx[pr(xn+lynzn) ur(xn-—lynzn)_ v(xmym—lzm) +

+

Kmnkx[“r(xn+lynzn) ur(xn-lynzn)] w(xmymzm+l)

- Konkx [ur(.xn+1ynzn) - ur(xn_lynzn_)] ‘p(xmymzm-l)\} (099-9x2)

Ay, Ay = T nhyggxnyn+lz ) + K

Tv-11



IV-12

p

= mfl {Kmniy[P (xn n+1%n ) - uf(xnyn-lzn)] ¢ (xm+1ymzm)

m#n

z,)

uo(xy H (xn n- -1% n)] ¢( Xm- lym m) o+

t
=
e

miyl " r''n n+1

+ KanyLur(xn n+lzn) - ur(xnyn lzn)] ¢(x ym+1zm)
"Kmnjy ur(xn n+1% ) - M (xn n-1% n)] ¢(x Y m- 1zm) +
+ Kmnky (xn n+l n) =M (x yn 1 n)] q’(xmymzm-n-l) T ﬁf
“ Kmey e n¥ne1%n) = He(Xa¥ni17) ] ‘p(xmymzm_l)} (099-9y2)
AU 9
—0 —29 =—Knthanynzn+1) Knhzur(xnynzn—l)
9z 32 ,
X p .o s |
- mfl‘{xmnizpur(xnynzn+l) = He (x nYn®n- 1)]¢(xm+lymzm)

m£n ‘
- Kmniz[u (x nYn? n+1) - ur(xnynzn¥1)] ¢(xm—1ymzm) +
* Kmnjz__u (2 Y n%he) - ur(xnynzn--l)] ¢(xmymflzm)
- Kmn‘szur(annzn+l) - ur(xnyn?n-x)1 ?(xmym-lzm) +
+ KmnkzLur( ¥Yn n+1) - ur(xnynzn-l)] V(xmymzm+1) -7
- Kmnkz U (x Ynzn+1) 'u?(xnynzn~l) ] v(xmymzm-li} (099-922)
Total (099-9x2,9y2,922) | }

9n 3¢y |
axn ax

U, de, U, Mg,
e —
ay AY, Az, 03z,

= Knhxu (x n+1¥n? n) +
+ Knhxur(xn-lynzn) -

- u(x

nhz r

nhyu (xn n+1z ) + Knhy H ( *nIn-1 n) +

(x yn n- 1) +

n n n+1) + Knhz r




+

P [ ] ‘
2 B {Kmnix ur(xn+lynzn) - ur(xn-lynzn) +

m=1
mEn

mniy [u (x n+1 n) - ur(xnyn—lzn)] +
Kmniz [U (x yn n+1) -'“r(xnynzn-l)]‘} ¢(§n+1ymzm) +.

{Kmnix [ur(xn+1ynzn) = ur(xn—lyn.zn)] +

+

+

+

+ Kmniy [Pr(xnyn+lzn) - “r(xnyn—lzn)j *

”; * Kiniz [ur(x Yn n+l) r( n’n”n- 1)]} ?( Vm m) )
- {Kmnjx [ur(xmlynzn) - M. xn-lynzn)]
+ Kmnjy [ﬁ (x X Y el n) -u (xn n-1 n) *

My (%Y. 1) } ¢(xmym+1zm) *

-

+{#mnjx Eur(xn+1ynzn) ur(xn-lynzn)‘ *

[u (x,y

Kmnjz [“r(xnynzn+l)

-

n+1 n) ur(xnyn—lzn)4 +

+ K .
oy mnjy
Kmnjz [ur(xnynzn+l) - ur(xnynzn-—l)d}'‘P(xﬁym—lzm) -
B {Kmnkx [ur(xn+1ynzn) - ur(xn-lynzn)_’ +

Kmnky {u (x Yn+lzn) - He (x Yn-lzn)] *

* Kinke [H (x n'n” n+1) - (xn n”n- lil} plx m’ m m+1) *
* {Kmnkx [u (xn+1y z ) r(xn—lynzn{} *
+

Kmnky [ur(xnyn+lzn) - ur(x Yn-1 ni]

- [ur(xnynzn+l) - ur(xnynzn_ljl} ¢(xmymzm-1{1 (099-9)

Note that the

+

through K contain ur(xmymzm)’

"constants" K ankz

mnix

TV-17



V-14

Express the second order partial derivative of Pn -

8
2 .
azwn 32¢n A en
5 5 5 9 by differentiating (099-5x, 5y, 5z) at n
ax, ¥y, 3z,
2 ’ ,
370, Aoy L ? v (u ;1) ey, ia cos(irmn) .
-2 AX nx v © m'" rm AX 2 2
AX n m=1 m 3x_ Ton
m#£n
A 2 cos(jr_) dw, 2 cos(kr )
22 mo_ ., 83 o (099-10xx)
3y 2 2 AZ 2 2
m AX B o myx r
n mn n' mn
. ,
ATe 3 . 1 ? T Do, Q? cos(irmn) .
Ayi Ay, ny Ly me 1 m'"rm Xy, ayﬁ rin
m£n
PP 52 cos(jr_ ) ) Npg 22 cos(krmn)' -(099-10yy’
YV ay2 r2 CE Ayz r?
yl’l mn n mn
2 3
A , A 2 cos(ir
Pn_ 2oy - L ? V (b -1) | om 3 (47 ) +
3 2 dz nz b ~ m'" rm X 2 2
zZa n m=1 m-azn rmn
m£n '
A 2 cos(jr__) g, .2 coé(kr ) ]
P A . o (099-10zz)
Aym aZZ r2 Azm 5 2 r2,
n mn Yn mn

~Substitute (099-6x,6y,62z) into (099-loxx,10yy,10zz), and developed
from the second partial derivatives of the terms with the iss,

Denote again %F Vm(urm—l) = Am

The result is

2
3 ®n 1 ’
= (—on(xn+1ynzn) + on(xn-lynzn) +

'6x§ *n+1 " *n-1

oy




p 1
+ v =-A —C (x ,vyz) +
1 { m X1 ¥y  Mixx 2\ *m+1” m“m
mEn
+ A 1 Cc
moox_ =X ) mnixx ¢(xm_lymzm) -
1 .
- A —=—0 elxy .z ) +
cm Y1 Y mel mn jxx m’ m+1lm
1
+ A ————=——000C (x v z_ ) -
B Y1 Vme1 mnjxx ?'"m m-1"m
1 ,
- A c - eolx v =
m oz .-z, mnkxx P m" m“m+1) +
1 .
tAL 2 -7 € nkxx q’(xmymzm-l)} - (099-13xx)
m+1l “m-1
Rzmn 1

= - °H (x.y_ .z ) + °H (x.y_ ,z.) +
Ayi yn+1'yn—1[ Yy ' 'n"n+l%n Yy mnmn-1"n

) +

+ b2 -A et (G .' (x Yy 2z
{ m xm+l'xm-l mniyy P m+17mm

X1 Cmniyy ¢(xm~1ymzm)

——— O (x v .,z)
MYl Yoy WOIYY PV m m+1%m

S
m‘ym+1_ym—1

Cmnjyy ¢(xmym-lzm)

Cmnkyy @(xmymzm+1)

M R — CmnkYY ?(xmymzm-l{} (099-13yy)

TV-15



Tv-16

n _ 1  _ ° oW
2 =z 1 { Hz(xnynzn+1) + Hz,(xnynzn-l)] +

p 1
+ Zl {-Am x -X Cmnizz ¢(xm+lymzm) +

m= m+l “m-1

m#£n
+ A —de ¢

M Xl ey izz ¢(xm-1ymzm) -

1

- A —— (xy .=

mox =X 4 mnjzz P * " m+1%m) o+
+ A 1 C olx y .z ) -

m Y1 Ym-1 mmjzz m’ m-1"m

- A c (x v =z ) +
m oz .-z, wnkzz P *m” m“m+1
+ A —T c (x v z ) ‘(099_1322)
mz .-z . “mnkzz ?'""m’ m"m-1
m+l “m-1 ; :

Equations (099-13xx}3yy,3zz) are giving the second partial
derivatives of L' in the form to be used later in the expanded

ol
expression of V'Bn'

A lumping of all constants results in forms of the equations
(0n99-13xx,13yy, 13zz) as followsiy' ‘

2
? ¥n = - K . + ? - K (x_ ,v.z.) + K (x .y =z )-
2 nhx+1 : mnixx? ' “m+17 m“m mnixx?' “m-1"m“m
axn - m=1 :
m#£n

- Kmnjxxv(xmym+lzm) + Kmnjxxw(xmym-lzm) -

- Kmnkxx"’(xmymzm-l-l) + Kmnkxx‘?(xmymzm-l) J (099-13xx1)
Azmn P | ‘
Ay2 =" Knhyi; + m§1 [_Kmniyy?(xm+1ymzm) + Kmniyy¢(xm-lymzm)-

n m#£n




- Kmnjyyw(xmym+lzm) Kmngyyf(xm m-lzm) -
Komkyy® Xn¥mZms1) * Fankyy? (*a¥nZn-1) (099-13yy1)
32¢ p
n
BZZ = Knhz_tl * mfl [ - Kmnizzw(xm+1ymzm) * mnizz¢( mzm)
-n m£n

z ) + K )>-

Kansz( m’ m+1 mnjzzw(xmym—lzm

- Kmnkzz?(x m m+1) * Kmnkzz¢(x m“m- 1)] (099-13221)

The sum of the second derivatives will be required. This is
written by totaling (099-13xxl, 13yy1,nljzzl)

2 2 2

A “h A Pn A ®n I X K

z * 2 * 2 T ""nhx+1 T "mhy+1l ~ “nhz+l
AX Ayn AZ . - had -

p ’ v

* mfl - (Kmnixx + Kmniyy + Kmnizz) P (xm+1ymzm) +

m#£n
+ (Kmnixx + Kmniyy + Kmnizz) @ (xm 1Y wm? ) -
- (Kmnjxx * Kmnjyy * Kmnjzz) ¢ (xmym+lzm) +
v (kK o+ K ) e (x Yo 12, -

mn jxx mnjyy mnjzz

) s

- (Kmnkxx M Kmnkyy + Kmnkzz) (x ym m+1

+ (X ) o (x v 2. 1) (099-13a)

mnkxx Kmnkyy Kmnkzz

Lumping the constants further

.2 2 2
3 @, 3 ¢, Noen _ p T « » )
2 ¢ 2 ¢ 7 =~ Kpt T - mni¢(xm+1ymzm +
Ax AY DT =1
n
m#n

Tv-17



+ Kmnim(xm-lymzm) - Kmnj¢(xmym+lzm) + Kmnjm(xmym—lzm) -
" Kome XV nmen) * Kmnkm(xmymzm-li] (099-13)

Only three different constants, Koni® Kan,_K i are used
for each mn combination, plus one constant X h'for each n.

Note that the constants K contain p (x A

mu’Kmu'Kmm

vah= 0 is automatically satisfied, because (099 14)(100-1)
-
H = - vp, see (099-057 sh. 9) (099-15) (100-4)
' v.B_ = 0 must be satisfied | (099-16) (100-2)

V.Bn = V‘[hrn o( e {) (096-7) (099-17)(100-5)
B, being a constant, follows
v. [prnvmn;) =0 - (096-8)  (099-18)
Expand (099-18)

2% A% 2% Al de AL A AU_ Ao

D , ' o :
Hrn' I21 * Hpn ; * Men g + axrn axn + ayrn éyn + azm~ azn=0

CE Ay, 3z n n n ?'n n n

| | (096-9)  (099-19)(100-6)
Add(099-9) to u_  times (099-13) to have (099-19). The |
result is a linearized equation between o ~ 8 and M, - S.

= KonaPr(Fne1nZn) * Kpnatto (X _3702,) + : w

Knhyur(x n'n+1% n) + Knhy“r(xnyn-lzn) +

= Knhzur(xnynzn+1) + Knhzur(xnynzn~1) - Knhur(xnynzn) +

zzj gimnix ur( *n+1¥n? n) - ur n-1Yn% i]
m=1
w#n

+

* Ky [Pe(%aTn,1%) - 1 (x1%) |
mmiz[? ( n’ n? n+1) (x nYn%n- 1{]

&

IvV-18




+

Kmni“r(xnynzn )} ‘f’(xm+1y,nzm) +

iKmnix[ur(xn-c—lynzn) = (x ynzn)] +

Kmniy [“ (x n'n+12 n) , ur(xnyn-lz;x)_]
mniz[u XnY nzn+l) (x nnZn- 1)] +

KmniL‘lr(xnynzn); ‘P(xm_lymzm) -

B {Kmnjxfur(xn+lynzn) L (x nzn)J *
Kmn,jry {u (x X n+l n) - ur(xnyn._lzn)] +

+ Kmnjz [ur(x ynzn+l) - “r(xnynzn-l)] +

Kmn-.iuff xnynzn) } ?(xmym+lzm) +

) {Kmnjx_[ ur(xn+lynzn) = Ur(xn_lynzn)] +
:: * KanY {U (x *n n+1z ) - ur(xnyn-lzn)] *

Kanz[ u (ann n+l) - M. (x Y nZn- 1)] .

Km »J.u (xnynzn)} cp(xmym_lzm) -

) {Kmnkx[ ur(xn+lynzn) - ur’(xn-lynzn)l *

Kmnky [U ( n n+1z ) - ur(xnynnlzn)} +

+

+

+ .

+

+

+

+ Konkz [U (x n'nZ n+1) - My (x nY n%n- l)] +

+ Kmnk"ur(xnynzn)} ‘P(xmymzm+l) +

+ {Kmnkx"[}ur(xmly z ) - ux v =z )1 +

+ Kmnky[ur(xnyn-&lén) - ur(x n'n-1 n)} +

= Kinkz [ur(xnynzn+l) - Hy (x nYn’n- 1)] *

L S i (xnynzn)} ‘F(xmymzm-l)] = 0 (099-20)

TV-19



Note that Kmnix through K

contain ur(xmymzm), but K

through Kmnkz and K on

i mnk

nhx

Expand again the K constants so as to show the My, = 8.

Knhxur(xrulynzn) + Kmhx“r(xn-—lynzn) +

- Knhyur(xnyn-rlzn) + Knhyur(xnyn__lzn) +

" Eonabe (FaVn%n,a) * Knhz”r(xnynzn—vl) - Kt (xa70%,) ¢

* g '?mnix E‘r(xmymzm)"l_‘ E’lr(xn-vlynzn) - ur(xn—lynzng *
w#n ,

+ Mnm:l.y @r(xmymzm)-ﬂ E‘r(xnyn+lzn) - ur'(xnyn--lzn)] o+

+ ;imniz E‘r(xmymzm)’}_\s 'ur(xnynzn-fl) - “r(xnynzn-lﬂ +

A (R O R Y RGN M SRR

Do B o) 1] (B 1) = elipa7a)] +

* Mmiyﬁfr(xmymzm)”ﬂ E‘r(xnyn+1zn) - ur(xnyﬁ—iznﬂ *

* Hnmié E‘r(xmymzm)“g E‘lr(xnynzm-l) B ur(xnynzn-l)] *

* Lt (i (2 ) 1] .ur(xnyx'lzn)} Colxg_ vz -

LN rRCEACR T (IR PR RPN

* MmJYEir(xmyﬁzm)"g E‘r(xnyrulzn) - ur(xnyn-lznﬂ +

* Minjz E‘ir(xmy:ﬁz»m)'ﬂ E‘r(XﬁYnznq-l)_ - bur(xnynzni—lﬂ +

Ly BrCatd T ot aa)] olsgpsg  +

*Eum,jx@r(xmymzm)"g Eur(xn+iynzn) - “’r(xn-lynznﬂ +

+ Mmjy,@r(xmymzm)ég [ur(xnymlzn) - ut.(xnyn_lzn)] +

IV-20

through Knhz and Knh do not.

3
]




+ umjzwr(xmymzm)-ﬂ (_‘:"r(xnynzn+1) - u.r(xnynzn-lﬂ +

+ l“mnj E‘r(xmymzm) _1] ’ur(xnynzn)j , ‘P(xmym-lzm) -

| "gumnkx@r(xmylnzm)-q E"r(xn-rlynzn) - “r("n-lyn”n)] +
+ anky@f(xmym’m)_"g Eﬁ"‘n"ml%) - u'r(xnyn—lzn’)] +
* Mg B ) T e (xantnnn) - wdxym, )] s
* L Py (¥ 1] .ur(xnynzﬁ)} olx vz 1)+
{Mmkx IMEEACRER Er(xmﬂnzn) N ENITAT) Y
My Tz 1] e,y - unley, )] s

* Monke E‘r(xmymzm)_:'] E‘r(xnynzn¥i_) - ur(xnynzn-—lﬂ +
+ Lok (Elr(xmymzm)—.‘l] 'p‘r(xnynzn)} “’(xmymzin-l)J = 0 (099-20)

All constants evaluated in this Appendix IV are listed in
alphabetical order in Appendix V.
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APPENDIX V

LIST OF CONSTANTS

A = %; v _(n_ -1) (099-9a)
-2 (x~x )% +(y ~v)? +(z -2 )% RP-3(x -x)?
Cmn:l.x = ‘2'-2 = RS
(E(xn—xm)z +(yn--ym).2 +(zn-zm)2]
| | (130-1)
o3 U reyy) o _ 230 x) (777
mnjx ‘ 5 5
= R
Fxn-xm)2 +(yn-ym)2+(zn-zm)2]
| (130-4)
. i -3 (x, -x_)(z -z ) i -3(x -x_)(z _-z)
mnk x % 5
Fxn"xm)z +(yn-ym)2 +(zn"zm)7 . . 8
' (130-5)
. _ o3 (x ~-x.) (v -v,) i -3(x -x_)(y_-v_)
mniy 3 . b
: R
Fxn-xm)z Hypmy)? +(zma)? ]
- (130-6)
A (xy=xg)® -20,v)® (220" ®® o3(y-y,)®
mn jy g - RO
[('xn-xm)2 1Oy g)? +laym)]
(130-2)

V-1



-3(y -v,) (z,~2,) =3y ~v) (z _~z )

Conky = , 5 = 3
j?xn"xm)z +(ynnym)2 +(zn~zm)2
(130-8)
-3(x -x_)(z -z ) -3(x -x ) (z -z )
Coniz = 5 = 5
' 2
(g2 ? +(r,my)? +(2-2,) " R
(130-7)
=3(y_~v ) (= -z ) -3(y,-v,) (2 ~z.)
C - = =
mnjz 5 5
- 2
2 \ 2 2 R
{fxnfxm> +<vn-?m> +(z-2,) (130-8)

(x-x )% +(y -y )? -2(z -z )% R®-3 (z-2)°
Conkz = 5 7% 5
. 2 R
1}xn~xm)2 sy =y )2 +(z_-z_)?
(130-3)
[g(xn"xm)z ~9(y -y )? ~9(zn-zm)%] (x -x,)
mnixx | ' % .
[(xax)? oy )? +(am2)?]
ﬁs(xn--xm)2 -9 Ré7 (x_-x_)
- —5 (130-9)

(v,ova) [120x )2 30y v )2 -3(z -z )?]

Cmnjxx ya

2
[§Xn~xm)2 +(Yn~ym)2 +(zn-zm)€]




(yn-ym) {EB(xn~xm)2 -3 Ré]

= (130-12)
(2 -2) [12(x -x )% -3(v-vn)® -3(z,-2.)%
Cmnkxx = A
2
[?xn-xm)z +(yn-ym)2 +(zn°zﬁ)%]
2 2
- (Zn m) [is(xn- m) -3 R:] (130-13)

R’

(xp-xg) [-30x-x)? 120y, v )? -3(s 2%
C -
mniyy Z

- _ 2
[y x)? + (v )? +(2,m2,)°

(x-x) [i5(y.-v)? -3 82
] &

(y,=v,) [}9(xn-xm)2 +6(Yn~Y@)2 -9(z -z )%]
C =
mnjyy A

[}xn-xm)z +(yn-ym)2 +(zn-zm)2

(v,vy) [i5(v,~v)? -9 &7
_ ”:

(130-10)

(zz) [-3(x-x)? 2y -y)? -3(z-z)
mnkyy - 7

2
zz;n-xm)z wly -v,.)? +(zn-zm{f]




' ' 2 2
(z_~-z ) [15(y_~-y_.)" -3 R :
= —D “7 L :Z (130-15)
R

L g [90x)? alryy)? ar2(smn)?
mnizz ~ 7

(g +rpor)? (a2

2 2
i (x-x) |15(z -2z )" -3 R;] (130-16)
r?

(yn'ym)‘ E"B(xnmxm)2 "B(yn'-ym)2 +12(zn-zm)2:}
mnjzz = ya

ﬁxn-xm)z +(Yn'ym)z +(zn"zm) 2:} :

(y,=v) [IB(znézm)2 -3 R?] |
= ‘ 7 (130-17)

c

(z-z) [-5Gx =% )2 -9(y -y )? +6(zn-—-zm)2]

mkzz A

B¥n~xm)2 +(Yn-Ym)2 +(zn—zm)%] :

. (z -2 ) 15(zn-zm)2 -9 R%}

(130-11)
R’




Kon = Knhx (ur(xn+1ynzn)

+

Knhy (“r(xnyn+lzn)

+

Knhz (ur(xnynzn+1)

+

Knh ° ur(xnynzn)

- Hr(xn;lynzn))
- ur(xnyn-'lzn))

- Mr(xnynzn_l))

K

nh = Knh;il * Knhyil nhg+l
L. ]
Hx(xnynzn)
Knhx " -X
n+l "n-1
o
. i} Hy(xnynzn)
nhy Yn+1 Yn-1
]
K - Hz(xnynzn)
nhz Z 41 %n-1
K °Hx(xn+1ynzn) B on(xnalynzn)
nhx+1 ~ x -X
"n+l "n-1
<] - O
K - Hy(xnyn+1zn) gx(xnyn—lzn)
nhy+1 Yne1 Yn-1
K - °Hz'(xnynzn-g-l) B on(xnynzn—l)
nhz+1l =~ Zo+1 %n-1
Kani = Xamixx * Kaniyy * Xanizz
Kmnj = Kmnjxx + Kmnjyy + anjzz
Kunk = Kankxx * Knkyy * ¥ankzz

(109-4)

(109-5)

(109-6)

(109-7)

(109-8)

(109-9)

{(109-10)

(109-11)

(109-12)

(109-13)

(109-14)



K = = (c

mni X2+l *m-1

~ 1 vm(“rmal)
Kuni ~ Ty x

*n+l *m-1

4 2 ' :
[gxn«rl-xn—l) ‘2}{(\‘ms@r(xmymzm)(xm-lynzn):l/r (xmy-mzm)(xn_'_lyn'zn)y )

2
- (2 cos E’r(xmyzm) (xnynzn)j/r (x Y uzn) (%, 7,2,) ) +

* (°°’[;r(xmymzm)(xn_lynzn)]/r (XY u? )(xn_lynzn)lz ¥

 u

éyn+l-yn»1

2
‘) 2}{003 Br(xmymzm)(xnyn+lzn)]/r (x y =z )(x 5 )) -

mm m n¥n+1%n
2 _ :
- (2 cos Br(xmymzm)(xnynzn):’/r (xmymzm)(xnynzn)) M

2
1177 (x y

+ ( cos E.r(xmymzm) (xnyn-lzn o mzm) (xn}'n_lzn) )

£ |
-.gz 1) 2 gcos [;.r(x y zm)(xny

m+l” Zm- w’ wm nzn+ i

2
)] /x ( xmymzm) ( xnynzmrl) ) -

2
- (2 cos Er(xmymzm) (xnynzn)]/r (xmymzm) (xnynzh) ) v

+ (cos E-!‘ ( memzm) ( *nY¥nZn-1 )]/r (xmymzm') ( ' n?%n-1 ) @ ﬁé%

(101-4) .

V-6



| A

w . - -
K"mJ = Yue1 Yam-1 (Cmnjxx * C"'“JYY * cmnjzz) (109-2)
. Vo(u o-1)
ij ¥ in Ya+1 Ym-1

[ W, .
[(‘.(xn-fl-xn-l) 2} oo Ej‘r(xmymzm)(xn'n-lynmn)j/r (xymzm)(xn+lynzh)) )

+

- (2 eos[ir (e y o Yy 2 /(x5 ) (xy )

m’ m m n‘’n' n w'm m n"nn

+ (éos[j

+

2
" xm"rmzm) ( *n-1Yn*n )j/r ( xmymzjm) ( *n-1Yn%n ) )

[ | e
TGym-l-yn-l) 5{308 E’r(xmymzm) (xnym-lzn)]/r (xmymzm) (xnyn+lzn)) )

2
- (2 cos Er(xmymzm) (xnynzn)j/r (xmymzm) (xn}'nzn) )

+

: 2
+ (cos Er( xmymzm) ( *nYn-1 zn)]/r ( xmymzm) ( *n¥n-1 zn)je

o L | 9,2
+{( zm+1‘zm-1) gés Br( xmymzm) (xnynzn-c-l )J/r (xmymzm) (xnynzn-c-l) )

| 2
"2”ﬁ3uyz)uyz)}’uggguyz)) *

!

m' m m nnnn nnnn

| 2
+ {(cos Er( xmymzm) (xnynzn—l)]/r (x_mymzm) (xnynzn_l )j]

(101-4)

v-7



A
m

(109-3)
i Zael Zm-1

—1 vm(urmﬁl)
Kank = &w z

T Zpel1™ “m-1
. | " l‘
(xn+l-xn-l)

/.2
—é?{}osi?r(xmymzm)(xn+1ynzn)]/r (xmynzm)(xn+lyﬁzn)) )

. ' 2
- (2 cosEﬁr(xmymzm)(x vy z )]/r (x

nan

mymz) (xnynzn) ) *

o

2 e
+ (cos[;r(xmymzm)(xn_lynznij/r (xmymzm)(xn_lynzn’b?'i) -
+{%yn+1_yn—l)’é}&}os[?r(xmymzm)(xnyn+lzn;]/r (xmymzu)(xnyn+1zn))-

- (2 cos[;r(xmymzm

2
) (xny,,z,,)j/ T xgyazg) (xy,z))

: 2
+ (cosﬁgr(xmymzm)(xnynilgﬁ)j/r (x. vy = )(xnyn_lzn{£;il

4 2 :
&) ) (om [or (a3 ) (xrn V™ (5 ) (5 )

2 ‘
R S P L L S PR LI
2
+ ( cos Zkr( xmymzm) ( xnynzn_l )]/r ( xmymzm) (xnynzn..]_ )}] Q;
(101-4)

v-8



| A_C
o K - m wnix
1xn+1-xn—1y(xm+l"xm-1)

mnix
X ~1 Vm(unmnl)
mnix I; X

m+el Fm-1

(109-15)

)-
mmm n+1ynzn)

1l 2
[(xml-xn_l)z (cos Er(xmymzm)(xmlynzn)']/r (x v z )(x

2
) (°°8l}r(xmymzm)(xn_lynzn)]/? (xmymzm)(xn—lynzn{ig

(101-7)
* mn j x (xn+1-xn—1)(ym+l_ym-1)

] | ) v -1)
Y
| Kmnjx “hn ¥y

m+l T m-1

(109-16)

ﬁ . ”
§ G 1) 2 (°°8[§r(x Y %) (X 2 )]/r (x ¥ .7, (%

mmm n+1yn n mmm n+1ynzn

))-

. -, 2 .
- (cos Ejr (x,y z.) (xn-lynzn)j/ T XY %) (X lynzn)lg]

B! (101-7)

Am cmnkx

(xn+1_xn-l)(zm+l—zm-l)

~1 vm(urm-l)
Kankx ~ In zZ .-z .

(109-17)

2o+l Zm-1

. 1 ' 2
;E Txn+1—xn_1) 2 {EﬁoaI%r(xmymzm)(xn+1ynzni]/r (memzm)(X

)) -

n+1ynzn



2
.~ (cos [kr ( xmymzm) (xn-lynzn) ]/r (xmymzm) (xn-lynzn)_)j>]

(101-7)
~ An Caniy :
uniy - (yn+1“yn—l)1xm+.1"xm-1)

X ~ 1 Vln( Llrm"l)
mniy I x x

m+l Tm-1

(109-18)

1 ; ' 2
[ryn-fl-yn-l) 2 &OB E‘r(xmymzm)(xnyn+lzn) l/r (xnymzm)(xnyn-o-lzn)) )

2
- (cos Er(xmymzm) ( X ¥, 1%n )j/r ( xmymzm) ( xnyn-lznl?]
(101-7)

A C
m__mnjy

wnjy Vne1 Vn-1) Wge1 Y1)

o v (u_-1) ,
K -
mnjy b Yo+l Ym-1

_ . .
[(an-l"yn-—l) 2 (coeBr(xmymzm)(xnyn+lzn)]/r (xv z )(xy

K

(109-19)

)) -

z
m m m n"n+l ' n

‘ 2
- cos Er( xmymzm) ( X Y..1 zn) ]/r ( xmymzm) ( xnyn-lzn)J]

(101-7)

AL cmnky '

(yn*l"yn-l) ( Zns1" Zm-1’

mnky = (109-20)

V-10




1 ‘ 2
}j(yn+l-yn-l) 2 (eosl";;r(xmymzm)(xnyn-t-lzn)]/r (xﬁymzm)(xnyn+lzn))-
2
- ’(co ] Eﬁr(xmymzm) (xnyn-lzn):(/r ( xmymzm) (xnyn-lzn)_gj
(101-7)
Kimiz = “u “enis (109-21)

Izn+1'zn~1)(xm+1~xm-l)

m+l “m-1

K ~ 1 Via (“rmnl)
mniz ﬂ# x x

m'm m n"n n+l

. 2 |
- (cos[;r(xmymzm)(xnyhzn-l)l/r (xmymzm)(xnynzn’lzjii]

(101~7)

1 2
[(zn+1-zn_1) 2 (cos Er'(xmymzm)(xny'nzn«l-l)j/r (x v =z ) (x y.Z .. ))-

Am cmn,jz
K -

( zn+1—zn-l)(ym+1'ym—1)

K o 1 vm(urm—l)
wn j = In Ty y

m+l ‘m-1

(109-22)

n°n n+l mm m

2
) (coslgr(xmymzm)(xnynzn-l):7/r'(xmymzm)(xnynzn~1))
(101-7)

1 ) | 2
Zj(zn+1-zn_1) 2 (°°°1§r(xmymzm)(x Yn® )]/r (x 7oz )(xnynzn*l))'



m mnkz
(zn+l-zn-ly(zm+1-zm-1)

mnlkz (109-23)

o

X ~ i Valtrut) Zﬁ
mnkz [ Znel " Zm-1

(zh+i-zn_1) z (cosigr(xmymzm)(#nynzn+1;]/r2(xmymzm)(xnynzn+1))- #
B (cos[;r(xmymzm)(xnynzn-lrj/rz(xmymzm)(*nynzn~1)) :
(101-7)
Konixx = xmjr'i:fixx | (109-24)
I os-22)
e e
Faniyy © Rt (109-27)
iy * aap-20
ey * or-59)
P

V-12



E
wod

%

+ K

A C

K = m mizz
munjzz Yo+l Ym-1

K - Am Cmnkzz
mnkzz zm+1»zm_1

Kx(m+l)= Ke(m-1) =

= Kmnix (“r(xn+1ynzn) =

+ Kmniy ("r(;nyn+lzn)

* Koniz (ur(xnynzn+1) -

+_Kmni' ur(xnynzn)

Ky(m+1)== Ky(m-l) =

= Kmn,jx (“r(xn+1ynzn) -

mnjy (ur(xnyn+lzn)

K

+

mnjz (“r(xnynzn+1)

+ Kmni “r(xnynzn)

wx y =z

we (=, 1v.z.))

- up =y, 12))

))

n-1

uplx, 1v,.2,.))

ur(xnyn-lzn.))

- ur(xnynzn_l))

(109-31)

(109-32)

(109-33)

(109-34)

V-1i3



Kz(m+1)= Kz(m--l) =

K onkx (ur(xn+1ynzn) - ur(xn—lynzn)) +

*

Koriey (e Gn¥nar®n) = Mpli¥oo1z))  +

+

Kmnkz (“r(xnynzn+1) He (x nYn*n- 1)) (109-35)

+ Kmnk ur(xnynzn) ™

K 102- 1
102-3

102- 15)

—
mni (“r(xmymzm)‘ly ‘

Kn 102- t
Lang = T0_(x_y .20 -1) loz-1%)
K : 102- 1
mnk :
Lmnk = Tuf(xmymsz-lf §ig§ {5) .
_ K 102-6)
mnix
¥omix = (ur(xmymzm) -1) 2102 15)
u Kaniy {102 -7)
wniy © (n_(xy_z )-T) 102-15)
- Kamiz ' §102 -8)
(ur(xmymzm) -1) 102-15)

Vell



K -
M um jx {102 9)

wngx = (o (x ¥y 2z.)-1) 102-135)

K

M mnjy : 5102-10;
mnjy = Tu_ (x v 2.)-1) 102-15
M Kom 2 2102-11;
mnjz = (0_(x ¥ 2z )-1) 102-15
M = X ancx 2102-12;
% mnkx ~ (p (x vy =z )-1) 102-15
u K iy {102-13;
mnky (ur(xmymsz-l) 102-15
1 . |
A
M Sz (r02-14)
i mnkz ~ (0 (% ¥z ) -1) 102-15

V.1is



GG

APPENDIX VI

List of Equations

Equations
046-1
oh6-2
046-3
oL6-4,5
oL6-6
oL6-7
oL46-8
047-1
oh7-2
047-3
o48-1
o48-2
o48-3
oL8-4
049-1
049-2
056-11
057~
057-45
057-46
057-47
064-1
064-2

Page
17
17, III-1
III-1
III-1
ITI-1
III-1
III-1
III-2
III-2
III-2
III-2
III-3
III-3
ITI-3
III-3
18, III-4
20
II-1
II-1
II-1
II-1
18

18

VI-1



Equations
064-3x
064-3y
064-3z
064-Ux1
064-Uyl
06L4-hzl
096-1
096-2
096-3
098-1x
098-~1y
098-1z
098-3x
098-3y
098-32
099~1x
099-1y
099-1z
099-2
099-3
099-hx
099-by
099-U4z
099-5x
099-5y

VI-2

Page
19
19
19
19
19
19
20
20

20

Iv-1
Iv-1
Iv-8
Iv-8
Iv-9
20

20

20

20
20
20
20
20
21
21

3




3
S

i

|
o
g

Equations
099-5=
099-6x
099-6y
099-6z
099-8x
099-8y
099-8z
099-9
099-9a
099-9x
099-9x1
099-9x2
099—9&
099-9y1
099-9y2
099-9z
099-9z1
099-92z2
099-10xx

099-10yy

099-102zz
099-13
099-13a
099-13xx

099~-13xx1

Pagé
21

Iv-1
Iv-1
IV-1

Iv-8

- IV-8

IvV-9
IV-12 & 13
V-1

IV-9
IV-10
IV-11
IV-9
IV-10
IvV-12
IV-9
Iv-11
Iv-12

22, Iv-14
22, IV-14
22, IV-1y4
IV-18
IvV-17
Iv-15

IvV-16

VI-3



Equations
099-13yy
099-13yyl
099-~13zz
099~13zzl
099-14
099-15
099-16
099-17
099-18
099-19
099-20

099-22
099-23
099-24
099-25
099-26
099-27
099-28
099-29
099-30
100-1
100-2
100-3
100-4

100-5

VI-4

Page

IV-15
IV-17
IV-16
Iv-17
IV-18
IV-18
IV-18
IV-18
IV-18

IV-18

23, 24 & IV-18, 19,

20, 21
24

24

25

25
25'
25

25

25

25

v O O v O

Lé




i
|
L

Equations Page

100-6 9
100-7 9
100-8 10
100-9x io
100-9y 10

1 100-9% 10

} 100-10 10

>% 101-4 v-6,7,8,9

. 101-7  v-9,10,11,12

;g 102-1 | v-1h4

8 102-3 v-1lh

: 102-4 v-14

| - 102-5 v-14

V; 102-6 v-1h

3 102-7 v-14

9 102-8 v-1h

: 102-9 . v-15

k 102-10 v-15

; 102-11 v-15

“é 102-12 V-15%
102-13 vV-15
102-14 v-15
102-15 v-14, 15
109-1 | V-6

 § 109-2 V-7

3 VI-5



:‘:‘?
8

Equations Page

109-3 v-8
109-4 V-5
109-5 V-5
109-6 ‘ V-5
109-7 V=3
109-8 V-5
109-9 V-5
109-10 V-5
109-11 V-5
109-12 V-5
109-13 V-5
109-14 V-5
109-15 v-9
109-16 | V-9
109-17 V-9
109-18 | v-10
109-19 V-10
109-20 v-10
109-21 | v-11
109-22 v-11
109-23 ' v-12
109-24 v-12
109-25 V-13
109-26 v-13
109-27 v-13

VI-6



Equations Page

109-28 V-12
109-29 V-12
109-30 | V-12
109-31 V-13
109-32 ' V-13
109-33 v-13
109-34 v-13
‘é 109-35 v-14
] 130-1 IV-2 & V-1
% 130-2 IV-2 & V-1
'E 130-3 | IV-3 & V-2
; 130-4 IV-3 & V-1
;i 130-5 IV-3 & V-1
! 130-6 Iv-3 & V-1
130-7 IV-h & V-2
,g 130-8 IV-k & V-2
”ﬂ 130-9 IV-4,5 & V-2
o 130-10 IV-5 & V-3
] 130-11 IV-5 & V-4
5 130-12 IV-6 & V-3
130-13 IV-6,7 & V-3
130-14 IV-7 & V=3
130-15 IV-7 & V-3,4
130-16 . IV-7,8 & V-4
130-17 Iv-8 & V-4

VI-7



Equations
150-1
150-2
151-1
’151-2
151-3
151-4
151-5
152-1
152-1la
152-2
i52-3
152-4
152-5
152-6

- 153-1
153-2
153-3
153-4
155-2
155-3
155-4
155-5-1
155-5-2
155-5-3
155-5-4,5
155-5-6

VIi-8

Page
12
12
12
12
12
12
14
14
1k

14

14

1k

15

15

15
15
15

15

17

17

17

17
17, III-1
III-1.
III-1
III-1




Equations Page
155-5~7 III-1
155-5-8 III-1
155-5-9 III-2
155-6-1 III-2
. 155-6-2 III-~-2
| 155-7-3 ITI-2
, 155-7-4 III-3
| 155-7-5 I11-3
? 155-7-6 IIT-3
C 155-7-7 III-3
| 155-8-1 18, IIXI-4

vVi-9



APPENDIX VII

Computer Program

as output of computer

VIT-1



vEY ULl UJ

XA 1T 131 %€ 00

0l% 1 =T 0¢% £e00
00% _ 081 0L 09 2€00
UET O T =TI = O T 1737 e 00
08« _ (MNEP4T-1)8 = (Nér¢I)g 0€00
Uit XV1130 4+ (NP4 T-1)Y = (AéP*1)Y 6¢00
— o05¢€ . =1 8200
08t 1 =M L2200
e 084% 0L 09 (XM*19°1)41 G200
Ot e 0> 09 (e 03~ TSI 3T §200
Lée T +1 =1 0%¢ %200
Oig 081 Ol 09 €200
U0eCU @ Il 0 M W IO R O Il M U ) 2200
U6d ><h4wo + (O*TI-r4138 = (OM¢re1)d 1200
ugd (W4I=-P4IIV = (MéPsI)V 000
0l<¢ — 1 = A 65100
09e 0%¢€ Dh 09 (AM*19° )41 8100
Il 1+ 0 =701 0L2 LIGO
0Sc0U 08T 0109 9T00
uwe V1130 + (TI=NHer*1)0 = (MéP41)D S100
Jee {I-M¢041)8 = (AN*Mr¢1)8 %100
A (T =9 r* v =10 T*T)Y €100
oue 0LZ 01 09 (ZM°L9°N)d1 2100
goi O%€ 0L 09 (£*03*IMSIH] 1100
U8t T S—="¥ U100
Ll (MEPETIHVEIMAPTIZHY (NP ¢ T YAHYT
U9l .Ax.ﬁ TIXHY S (HEPLLTIIDA (NP 4T )G (NP 4TI IVEIISedhY) G49VW TTIVI 081 6000
- 54500 =M 8000
Ux100 1 =7T L0000
o%1 1 =1 2000
Ut 1 VL T3QYAVI IO XVITI0T
uel EZWEANEXN G (TATCTIO(THT*TIGLTICT TIVEJWVYAIMS4O3S (0E94Q)T LT UM , 000
01l {009¢9)3114M %000
o0t 7Y I TIOTAVITIOYXVITIAT
U600 EZNSAUEXA S LTATAT)IO(TISTCTIEA(T T *TIVIAWVAIMS O3S (0664G)0UY3Y 00T €000
0000 IMS493S mmuwkzw 2000
(7 5 S TRV 8 Y 7HVT
${gehse ) AHY S (Hé4 4 ¢vx14 (v é)D0¢4(Hé4e5 )85 (54544 )Y NOISNIWIQ 1000
Usu00 N3WI 233dS 2
Uv000 IHI 3UISINO SINTU4 SV T1IM SV U3d1d 13T TIVEVd 83138 € A SO0 AQ G0 J
e Vv NI SINIOd ¥Od QILVIN3TIVD 3dv SILVYNICE00D OGNV g1314 3HL *d749vH 2
cOU0  SNILIN0AuNS STV 117100 ZLTIOHWTIIH NOILD3S 2 NNl 08% ¥V ¥0d ¥Y3L13IW 3
U000 83d SNAMMI-dWY NT AILISNIINT G373 JITISNOVW SIIVINI VI WY99Udd SIHT J

Vd

uv/ev /00

S6 189

= Jdivd NIVW

0 aOW

€7 T3A37 9 Al NVY1¥0d

Vil=2




Vit=:

U9 ON3 €900
099 (8°GI3LdT*EIC*OHT)ILVYIWEDL 099 2900
0sa9 {HHT*XETZHHZ*XET* AHHZT
79 X T XHR S X T ZH T XS T AR T X HF T XA T e THE Y  THE *URT T IVRHEOI 0%9 1900
{9 0T3ESIE4Yy "DTId%4CI240HT }LVIHYEOS 0€9 0900
029 (ZVLI3AHI * XY AV LI3AHG2
o1Y X XV T T 30A S X I HZ e AR X IR X T O ZHZ X S UAHET Y XE Y UXRZT S XLT
009 SAWVHESX 2 IMSHESXZ 9ISHE‘OHT/YIV NI ALISNIINI CI3I4HZZ*THT)ILIVWYOLd 009 6600
(0°0T4e451¢ /E€°014€49°0T3¢GIC)LIVIWYOS 066 8500
oga - 00T 0109 1600
INNILINDD 09¢ 9600
0%s 0L 09 $600
T = 3"08% GO0
09s 01 09 €400
0% o» 09 (ZM°377° %141 2600
- T 3 ="Y 1600
096 04 D9 (e°*D3°1IMS)H} 0600
0LsS (NEPETIHV (NP S IYZHY S (M P T )AHVT
- 075 il e U0 '€ 2 A0 7 A A 0 00 Bl 7l M 0 B° A O Al A B0 00 it M S 1A I 8 O <1 0 4 5500
. T =M 8%#00
08S (041 09 (€*03°*1IMS)4] L4000
- 0%%g AW T =T 095 00 %00
Oes XM¢T =1 096 04 5400
0¢s (0%9%9)311¥M 026 #4900
I TTIONT €400
VoY% {(XM4T = 11 ,
08% CLANS T=P (ZAC TN UM e T ) ZHY 4 (N4 ﬂ.HV>I<.*1.ﬂ.HVxI<~v~nm F3LTdUM 2400
L% (KT =L AN T=r (I TN O T Tyt hwm..x._.h~<-~.m IEFSR:LU 1%00
, 8 ONIM3Y 0+00
U9y 028 01 09 {(1°3aN°1IMS)4] 08% 6€00
06% 08T UL 109 8C00
0%+0 Zv1i130 4+ (I=M*PeT1-1)D = (N*P¢1)D LE00
Ue¥ (I=-Mirs1-1)8 = O*r*1le 9¢00
0c% XVIT3T ¥ (IS0 T T=1FV = (T TV SE00

C%/e%/00 66189 = 31vd . NIVK 0 GOW *T T3A37 9 Al NV¥LWDS




IV ="ZV 0t% 1500

- e s CU="329tL9%8 " ¥

wmw%mw ZNL %= -p*21 + 2N = IN ‘ 0%00
01%0Ws , ANL % 0°21 + AN = AN 6200
00%0ws 0 T ‘ XTI % 0°¢L # XM = XN 8t 00
06€0LS ((OMLI)X %= dA = (OMLII)IA x dX) % NDO + 2Nl = Znl Oé6¢€ L€00
08E0KS ({OMLI)Z = dX = (DMLIIX % dZ) % NOJ + ANL = ANl 9¢00
TTTTTOLECHS (TOMLIYA % d7 = (OMIITZ % dRKY ¥ NUOJ ¥ X0I=XN1I ‘ SE00
09cOWS _ {Exxd)/ Id¥dd = NOD - €00
0se0nsS {TONIYZ - (ZON1NZ = d2 €€00
U7c0OWS {TONIVTA ™= (ZONTYK =d&k rAN 1Y)
UEEONWS (IDNI)X = (ZONI)X = dX . 1¢00
QCEORS {(Zxx(0M11)Z + N**ﬂoxwmv> + N**.ozhuuxvhxam = Y 0€00
UTeOnS . 1= OWMIT = 1ONI 5200
COLORNS T + OMLII = ZONI 8200
Ub620WS , I = 2 = 0OML1 , L200
U8 CURWS ¥ *¥1 =1 06t 0U 9200
CLEOWS 3 - 1IV¥ = (1)Z 0LZ §200
U920KS g - (9dVINIS % avy = (1}A 2200
CGZONWS vV = {93V 7rSUT * Qe = (171X XA
DY EONWS 93S1d % INNQD = 9¥Yv , 2200
0CZ0NnS . I - 1 = INNOD 1200
UZZUOUORS i IX*T =1 _0L¢ 00 0200
U1<0RWS 0°0 = 2Nni 6100
QGEORNS 0*0 = ANL . 8100
CoTOWS U= XL 17100
Q8 10KS . G¢T = I Dg¥ 0OCG 9100
OLiOWS 261 = X 0%% 0d ; 6100
JYTONWS CHGBBEELT = 0OVY . %100
UsTOWS v = 2V €100
U7 {UKS 2¢T = dnlI  0s% 0O . 2100
O TOWS {1Tda = ~%)7°1T = Idud 1100
CZTURS 93S/1d = 93S1d , 0100
ULTUKS 0°0 = In 6000
CULOWS 00 = AN 8000
O0600WS 0*C = XN L0000
0e00RS : L2661%1°E = Id 2000
GLUOWS B50868GE T ="2VV 000
UY00WS , T+ 3% % 2 = I 2000
ULOORWS ¥ = 9385 . €000
U700WS {0001 Y7 *(O00T YA tO00T T X NOISNIWTQ 2000
Ot O0OWS (HEZHCAHSXH D4 gy s 4diuY ) QT49VYW 3NTILNONYEENS 1000

OcOORS A HJV3 SNYNL 21 40 STI102 a3 ivyl 2

=N3IJNUJ O HITR TI0J ZITORWTIH HOVI SIIVRIXOIddV aNTINodeEns SIAT J

0%/7e%/00 66189 = 3J1ivd NIVW 0O GOW *T1 T3A37 9 Al Nvyl¥0d

Vll-ﬁ



=
-

Vil -

O 1GONWS ON3 0s00
VOGONWS NYni3yd 6%00
CovUWS (%A ¥ Cx%xAH ¥ %% XATIIOS = H 8%00
08470WS , N x dWVv = ZH L%00
CL70OWS , Al x dWV = AH v 94%00
U9%0OWS XTT % dAV = XH %00
: : €H0E8eHE"~ = VYV 0&% 7400

0420 WS 20-328682.01° + Ovd = UVd O%% £+00
vV = IV %00

39vd C¥/e%/00 66189 = 31vd GT40VHW 0 QOW T T3A37 9 Al NVYl¥Od




St e,

g e= 0%t 00 €00

Idldée=r Qge¢ 04Q ?¢00,
1dl1¢2=1 (0S¢ 0Q 6e Q0
e T . : T =V1 —4%¢00
029 01 D9 (10l1°37°(130)s8Y)dl] £e00
(d11*T=r“(r*I)VAY) (OTIO0T*CWNN)ILIYUM S8C 2¢00
S T o T dIT*T=1"53¢C 0T —1€00
(OO0T*ZWNN)II LI UM Ce00
_ 130 (006°CWNN) 311 YM 6¢00
o VRV IOA I 30 WY a1 ar¥d I Y TVITHd T1VD 8200
(1d1%c=14(Tdrte=Po(TdN =N (NHr*1)T8N))) (0694 CWNN) JLIYM 1200
{02 242WNN)I LI NN G200
- ITIATT T = WI'T 0U6% 00 G200
: ~»0hm.. =14(Z28T=Pe(r*1)uNH)) (06S¢CWNNITLT BM 2200
fO0B*2HNNYI LT UM £¢00
(A =T AT = (AN T U T IV ZRV OO T Iy 2 VY T (U9 “ZRNNTI LT 8 2200~
(OGLSZHNNNITLIYM 1200
(AI¢I=1%4(dreTI=P{adNeTI=N (M I VAHVE N ¢TI IAYY) {069 *ZWNAN)YILT UM 0200
(CEZLZANNTILITYM 6100
(d14T=18(dPeT=0 8 (dHST=MPIUAP ST IXHYAINL4TIX))) (0594ZWNNITLT UM 8100
(0BG *ZWNNIILTHUM L1060
TIOAY IGIT IS a3 TIRT TN ar*d I (OI9 cRIIN Y I 1T am ST00
(1dI4Z=18{TdM%2=r(TadRZ=N O 4I)TEN) Y)Y (0G94WNN)Y (v3Y _ ¢ 100
: (dI¢T = I1
- AT e a I =Y O T T T RV O T T VAR OO T Ty XEV Y T (TN v 3y 100
(A1 T1=140dPeT=r s (gU IS (UL I IZ4 NP CTIIACIUNeTIXE)) {IAON) GV3Y ¢€1C0
TWHON ONIM3Y . 2100
(ICIT =12  I=r (I YanNAY ) (O%9*WNNTOV3 Y 1100
T=dX =TdM : 0100
I-df =1dl 6000
T=d1 =1d1 8000
40% TJOASLI0LTIYISAI P LININ N 4dr dl (CE9WNNIGYIY . L0000
6 = LN 2060
9= ZRNN 5000
8 = IWNN %000
S = WNAN ¢000
TN G ZRAVE ARV XAV 2 A* X NOWRDD 2000

nm.mv<z<.ﬁN.oopvaI..¢.¢.¢vNZI.ﬂ¢ PERIANH (745 9 ) XNHE (8182
Y9t ) NHO(v Y RV w4y ) THA (94947 ) 2Nt (049 TUN (¢ 9 44 ) ZHY T

G A A PN AN SAREED M AN CLEAE S WANE AR LD PRNT-RE AL DD SR Y EITR L 1000
. INILNOY NOISYIANI XIdLlviW Vv STIVI VIIHd 2
*IVOH OGNV Wudd “TvD1IHd S3INILNCYWENS STTvD L1 Q7314 TUNU3LXI NV o/
ULl 50 IWISIIVvW DJTIEN9VW JUISNT OT13T1d IAL STINIWOD WYH90d¥d STHI J ©
: 1
_30Ve 0s/85/0C 56189 = 3LVd NIVHW 0 a0 *T I3A37T 9 Al Z<mhmuw =
>



Vil=-

{OIMTYANHABTUA LTIVWGUS ULZ

gLllu

19vVd

{ (AP ) XNHHRSOHT Y LVWY04 09L LLOO

( = = (2TITYZHY*(ZTTIZHCTTTIZHVA(TT 1Z SI WYO3HYZ*OHTILVWYO3 062 9.00
O T TENHS OH LT IVWI0d 0%L SI00

{ - - hnﬁﬁv>rq.hmﬂﬁv>ﬁaﬂﬂmu>x< nﬂﬂav> S1 WMOJH?Y*OHTYLVWHOS 0¢L whoo
{(9°6T3dT)L* HIYLIVWHOS 069 €.00

{ T TITARV I DO (T T DOIXEY T TTTO X ST WYOIAZY *URATYIVWEDd U89 ZIU0

(8°9T4=3WNTI0AHL*9I=10LIHG*B*GT3dTI=ISd3HGT

SXZeI=1IWITHE X241 laxxm XZ*eI=dMHESXZ*ETI=dIHESOHT )LV WE0S 099 1400
(O~ UiIETIVRSDI 059 0Z00

{O°0T148)Y1IVHEDd O%3 6900

{0°0T449°GT3*9140°0T4491I%)1VHEDd 0€9 8200

TIX3ITTV) 900

(OZO0T*CWNN)I LI UM 029 9900

1IX3 AIvd 300

EWNN I TI30N3 900

(14142=14(Tdr*2=r*{TaN* NP CTIWY)I))  (EWNNDISLIYM €900

(dI¢1=1T

AT T ET (N T T T T T N OO T T TANE O T ¥ T T X NH T T TTERTIN T I LT UM 2900
(dI*T=140dP* T=Po (g1 (AP ST IZEMNM T IAC AP ETIXIII(ENNN)ILT YA 1900
CWNN ONIM3IY 0900

(T3 = (IdT = (I =N (T T IRV I T Y (UB9 *CRNNTIIIEM 8500
(062L4CWNN)3LIYMA 00¢ 8600

(Mérdligdn = (MEQr*1)T8N 06% LS00

Tas =y 06% D0 500"

1dr¢2=r 06% 04 ¢s00

1d1¢Z=1 Q6% 00 0¢&H 7500

g0 U1 09 v c00

3NNIINDD 0% 2500

0c% O1 09 (I1Sd3°19°(Mrt1)gdny/ (L1 TN—(N4r¢112un)isavidl 1<¢00
. gy e=—Ucvy 00 0ST0
Tdarég=r 02% 00 6400

1di*2=1 0¢% 0a g8+%00

(IO SN I ar ¥ dI *NH*28MIWgdd  T1VD %00

(dI41=14C0dP*T=P4(aM“T= “(UP*TIIZNH) ) ) (DO CWNN)ILIUM 9400
{O8L*ZWNANIT LI YM §%00

(dIV 1= (g I=r (O =Y (T YITANBYTY (00T CRNNTILIgM %00

‘ (OLL*ZHWNN)IITLINM £4%00

{dl *1=1%4dPeT=C*(dN*T=0 S{MP*IIXNH))) {050 42WNNYTLT UM 2400
“AUSLPZRNNY 3T THM %00

(NH ZNH* ANH XNH  THA*dY *dr*dITVIH T1TVD 0400

1 + V]I = vl 0¢¢ 6€00

tvITg = 011 THd 8e00

06/89/00 $6189 = 34VQ NIV C OOW *T T3A37 9 AT NvVY1id¥0d




ON3 9800

{SVINONIS ST VRVAST*COHTITIVWYOd 0201 ’ 5800
L ((9°GTILY*OHT)ILYWU0d 0101 #800
(VWV XIYLVNHOT*OHTILVYWAOL 0001 £800
(891341 = [IUHG*ORTYIVWIDI 006 2800
((FIYINHHLAOHT ) LVYWYUOY 008 18060
(NP1 WV HB*OHT)LVWYDS 064 0800
(OIFT Y ZNAAS *OH T Y IVWI0T UBZ 5200
oo}
19V 06/86/00 66189 = 31VQ NIVW 0O GOW “T1 T3A371 9 Al NVy¥.LYDd

>



Vil-

I 0L 09 (N IN 31 0%00
009 0L D9 (W*3aN°PM)JI 6€00
. 209 0L 09 (7*3IN*I1)dI 8¢00
- _ . Tawse=N0%s 1 U0 Le00
Tdrég=r 0%sT 0O 2e00
Idl¢2=1 0%s1 0Q se00
T i!lAAAIZﬁﬁ14%Nf4d!24ﬁéJqNJQAAAIZﬁﬂ%4ﬂ§ﬂWIﬂ1ﬁ4JH?A%NE«%!NNM« %00
(INST=WE TIA=INCTHW TIAIZCINS T=nE TIAHY=(NT+W TIAHV ) =AAHY £e00
(INSWRAT=TIX=(NSWEI+TIX I/ CAINSWE TN XHY~(N W T+T)IXHY ) =XXHY 2¢00
(TN R TV = TFN R T 2 1 7 (U T=N W T an= (TR W T reny= Z2an 1e00
ﬂnz. :z TMA-INCT+HR S TIAIZ LN T=WE ) daN=-(NST+RET) 8N = AdN 0e00
(CENAWET-TIX=ANSWEL+TIX I/ N WS T Jvmannz.z.ﬁ+4~m:v| XHN O+wh 6¢00
T = TTFN*RYTIan 8200
O%% 0L 09 (IdM"3N°NIJI 0%¢ L200
*T = (1-N*WéT)HN 9200
S%e¢ 01 09 (¢ 3IN"NYIT 0%C 5200
*T = (N*T+A*T) YN %200
0€2 0L 09 (T1dP*3aN°*W)4I 0éc €200
T = (N T=w*T1T1gn 2200
pec 0L 09 (Z2°3IN°*W)4] 012 1200
T = (N*W*T+1)un. 0200
Ule 0L 09 (141" 3N d1I 00¢ 5100
*T = (N*W*I-T)¥N 8100
00Z 0L D9 {(Z2°3N*7)d1 LTI0CO
1a*e=sN"0%e1T 00 3100
1drég=W 0%¢T 04 5100
IdItz="1 0%6T 0Q +100
dTIVZ IO = WA €100
*0 = (r*1)VWVY 021 €100
dli*1 = 1 021 0Q 1100
dIT*T = 1T 0217030 0100
L2esiyl*e = 1d 6000
I-dd =Td¥ 8000
[=dr =14dr o000
{=d]l =1dl 2000
dl]l = dllVv <000
(C=dITx{c—ar¥x{c=dn) = dll 000
YN ZHY S AHVEXHY ¢ Z4A*X NOWWDD €000
RS AR A AN BN ESE AR IR D IIRNEE AL AL SVANE LE AL DY &1
T S R (5 5 S VRV (H S S ARV (F 7  F T XAV (¥ 57 TWV NOISNIWIT 2000
(YWYETOA LIA WY LT dNtdrtadl) TVIIHd INTILADHENS T000

SNOILIVNDZE SNOINVITINNIS 3AT0S 01 3INILNOYENS v SAIVI

J

*SIHONIYIS FT04dT10 JINdWOT UL VWV XTalVW dN SISS JNTINOUENS STHI

T3A37T 9 Al NvYlu¥0d

J

Gs/869/00 §5189 = 31vd NIVA 0O QOW ‘1

s, e ey L PrO— -




S T= F - Tx (=g X T¥ =TI Txte=dri={d=add)= vIr o011 0800
WNG + (VLA*VI)IVWY = (VP4VI VWY 6,00
0011 04 09 (T°1°vr) 41 8.00
o O01TT O 09 (91T 1o°vrral LL00
T=% #+(1=P)x(Z=dN)+{2-1)x{c=df)x(2~dN)= VI 0901 9.L00
(APNKHD % 28N + ACNWIxAYUN + FINWIxXYN + (ZZPNWD +71
NYWE TV anT Xt O = Ty A= T T 7 O T T WRVY=RNg G200
WO - (VP*V1IIVHAVY = (VP4YI)VRY »L00
0901 0L 09 (dLI®i9°vr)dl €L00
T U901 01 09 (117 Vvridl 2L00
|z+~m FIx(Z=di)+ (€=-1)x(2-dP)x(Z-dM)= VI 0801 1.L00
WO + (VPAVIIVHY = (VP4VI)VAY 0100
T T T e 080T 01 09 (A1 19" VvIm)ygl 6900
O80T 0L 09 (I*i°vM)dl 8900
T=M+(Z=P)x(Z=dN)}+ (T-1)x(C~dP)xlE~-dM)= VI L9900
T T ’ (WINWD % Z8fl ¥ TINWIEXIT ¥ XTNWIHXEIT + (ZZINWD +1 -
AAINWIHXXINWD I ANGWE T EM) = (HP * -1 IX= (WP T+T1 XY/ (MNP T YRV =N 9900
(*T = (*C*1)dN)Y x WA % (Id % *H)/°T = (N*"*1)IWVY 080T 6900
T ” - (CZZHY F AAHV F XXHY T & (N R T+ 1
ZaDNx{N* WA TIZHY 4+ AUNEINCWETIAHY + XUN=(N*W*TIXHY)I- = (V1)9g %900
I-N+{C~W)x{(Z=dH )+ (=T} {2~=dP )% {2=dN)= VI €900
T F378R % (29 %"% = c%wdZ % "SIV = ZZTNWJ 2S00
Lof¥7 % (28%°€ = ZxxdA %*ST1) = AAMNWD 1900
LU/ 8% (2% =~ TxxdX %°*°G1) = XXMUNWD 0900
L378X % (¥ % " = ¢xxdZ % QU ="Z2ZINWD 6500
LY 7/ 94X % (28 % *€ = Zxx¥YA % *S1) = AAINKWD 86C0
Ld / YA %l 28 x *€ = ZaxdX x *GT1) = XXPNWD £S00
1T 7 97 % (9 % "6 = ¢%%dZ % "G1) = ZINNWD 9600
Ld/dA % {(2d x *% = CxxdA % ST} = AACNWD q600
Lu/dX x (Cdx*o= Zx%x dUX & *G6T)} = XXINWD %600
CH/ 8 % 99X % %t = = JAINWI £EC00
SY/¥Z % YA % *t= = NFNWD 2600
SH/JdA %= ¥X % *t= = [INWD 1600
mm\.m**xN * "t =~ cd) = INWJ 000
Qu/ (Zx%x¥A % € ~ 2d) = APNWD 6400
mm\ﬁmﬁsmx % "t ~ 2d¥) = XINWD 84900
S t%%cd = LJd 1%00
G*Cxx¢d = 6Y 9400
CxxUL + Cxu¥YA + Zxx¥UX = 2Y S%00
T ANTW*YTYZ = 87 7% 00
(AELATIIA = (NCRETIA = WA €%00
(Herd1)IX -« (N*W*T)X = ¥X 009 2%00
0%7%1T 01 09 14G0 o
aJvd 0e/8S/00 GoI89 = 31vda IV IIHd © 0 JOW “1 T3A3T 9 Al NVYLU0H W
-



Ve 4L

JLID AQVIR /

£ AJU 1D NUANNRUI D

Vit=jIii

GN3 9500
- N3I3Y TE00
(L30T *8dLI*VWVIANIW T1IVD 4600
. SNANIINDD O%s1 €600
WO = (VI*VITVRY = (VT “VIIVWY ¢600
0%51 0L 09 (dlI*is°vr)dl 1600
. G%s1 34 09 {I1°171°vry)y d41 0600
T = W F (T=TIH(Z=ddT¥F (=TT (Z=drix{e=a)I=Vvro%t1l — — 68BU0
WNG + (VPYIITWY = (VYQeYI)VRY 8800
0%11 01 09 Ampm.pw.<ﬁvuw Leg00
O¥1T U1 09 {0 S A A 2 i B B 9800
N+ (=) {Z=dN)+(2=1)%(Z=dl )k (Z~dMN)= V[ 0211 S600
(ZANKIRZEN + ACNWI=AZN + NINWIRXAN + {(ZZNKD +1
T T >>xzﬁdﬁ%ﬁﬁaﬂqqﬂ42é244qm:qlAAJIJ%77+H4MIAA¢u1417&%N%ﬂ4ﬁ4ﬂ+442< W 800
WNUG = (VMAYIIVAY = (VPéVI VWY £800
0211 0L 09 {diI°19°Vlr)dl 800
- 0ZIT 0O1r 09 T T T Vvry 31 1500

39vd 0S/¥5/00 $6189 = 31vQ IYOIHd 0 OOW *1 13A37 2 Al NVYL¥O4

ul\?lt) )\b%ﬂ wfi&fﬂ « ~ u , ; m?t::.;é, \vﬁ?cyzx.
: ] 4 p : ! ; ]
L ¢ < S




N3 L200
NdnlL3 9¢00
(CEH U T IV ZNH F 2R Fx (A T T T ANH ¥ ¢ (OO T TV XN T8 S = (O M 1 INH O 1% 500
(TP I)Z-(T+MEP 1) ZY /0 T=AHEP I} IHA-(T+ANP ST Y IHA)==(N*T* T }ZNH 200
(A TP I A=A TP IIAYZ A T=P o I) IH = (A T4 ST IHA ) =={( U T 4T JANH £c¢00
O =T I = O T T F I 7 O T =) THE= (O M TF T TR == 0O T T XNH— 08t 2200
*O= {(T4MP4I)IHd 1200
08t 0L 09 (TdX*aN*MH)dT 022 0¢00
- U= (1= THa 6100
Dee 31 09 (Z°3N*M)d1 00¢ 8100
0= (MN4T+P41)]1Hd LT100
00 I Y TdrENT 3T 081 100
*O0= (M4I-r¢I)IHd S100
o1 0L 09 ( Z2°*3N°M)dI 091 2100
o oW THTIFIVIHG €100
091 DL 09 (TdI°aN°*1)3d1 O%1 2100
. ‘0 = (Wr4T1-1)IHd 1100
T U517 01 00 {2 aN*TT31 U100
TdX¢eg=X 01+ 04 6000
1drie=r 014 DO 8000
a1 =T 0T% 00 000
T=dd = TdM 9000
I=df = 1drl c000
=gl =191 Y000
ZHAYX NDWWOD £000
(Y 9 INHE (4 H 5 ) ZNH (24585 YANHT
S S T NA (S N L T S R A (H S I X (5 %5 T THd NOTSNIANIT 2000
(NHEZNHEANHEXNH*IHd 4 dX“dlréd T }IVOH aNILNOHENsS 1000
o AVIA3LVAW 3HL FUISNI SLINIOd 2 ~
U HIONIEIS UTETd U1 WIINIGIOd gV VIS SIYSANT I SNTINOIanNS STHI J -
§
H9Vd 0S/85/00 5619 = 31VC NIVW 0 GOW ‘T 13A37 9 Al NVHL¥0d =




Vil-13

aN3 12C0

NdNiL3d 000

IMNTINDI 061 65100

((T¢1=-vIJUNH=(T*VYI}dNH}IT
JOEZAT-VINUNH=-(Z*VIIUNHI (NPT INH + (Z241-V1I¥NH = (Mré1)cen 041 8100
061 01T 29 L1000

(Z4T1)1UnH = (M4r¢1129n 061 9100

06T 01 D09 5100

(IO ENH = O 1yean %100

001 21 09 (4DL1°37°vi)dl £100

T+ vl = ¥l1 2100

O U 0o Tt v I TgnE I T O T TINAYI T 00T TT100

. . ¢ = Vvl 0100

06T 0L B9 ((T T 3dNH I (MN*P4TIINHISI 6000

T =061 00 8000

1dré2=r 061 0Q L0000

Tdi1¢¢=1 061 04 9000

i—dd = 1di G000

i-df = 1d°F 2000

1-dl = 1d1 £000

(C*COTVaNH* (HF* % * 5 INR* (¥¥ %7 *H Y29 NUOISNIWIT 2000
{LOLL*YNH I AP ¢ dI*NH*2dN)NY3d 3INTILNDUEENS 1000

SH1ON3Y1IS (07314 40 3NTYA d31NdRWDOD 2
dHL WOYdS ALTTISVIWIId 30 SINTVA MaN SHI SIIVRTIST INTINOYEGTS STHIL J

189 = 31Vd NIVAW 0 GOW ¢1 T3A3T 9 AI Nvulddd

C&s/65/00 &6

R, o PRETA—— - [ PR e, [re—— JEop—




T T co _ (FIeyIvVREDd 0ty €00

0eT 01 D9 9¢£00
<I.N<I.>az’qu noo¢.mz:4~mka3 SE0Q0
e me T T \ AR WS S VIR AATI IS N S L %200
nm**N<I + ZxXAVH + ZxxXVH)LYDS = VH ee00
{ZANRORA(NT T )ZNHT
T e s e FTTNR IR O T TTARNH ¥ WINR IO T T XNATF O T T RV=ZVH = ZVH U8t ¢e00
(HONWI (MM 4T )ZNHT .
+ APNWD (AT ¢TIANH + ﬁuzzu%ﬁz CEIIXNHY % (N P *TIWY = AVH = AVH 1200
} UNITNRD = OO T I YZINHT
+ CINADR{M TSI IANH + xwzzu%hx.ﬁumvxz IEAS LI Hqu'x<I = XVH 0e00
Cx4Y/HZ & YX%x*E— = MNINWD 6200
1; SHEWRI/ /L F HAF e = ATNWD 8CCO
Cund/ (dAxdXx"E-) = PINAWD 1200
Cxxd/(Candl%**C — Zxx¥Y} = ZAUNWD 9200
SENEZ (TR GAF = ¢y ) = ATNKD ¢Z200
G/ { QY Xx*E ~ ZAax¥) = XINWD 4200
(Za%dZ + ZxxdA + ZxxyX)}1lddS = H €200
AT T YT =V =47 ’ 2200
(NP *1)A = VA = dA 1200
(M*P4TIX = VX = ¥X 0200
,ax+w(xtd®m1d@lllillll!lillldHoolllt
1drh¢g=r 08¢ 0Q 8100
14142 H 08¢ 0d L1000
O ="7VH 9100
0°0 = AVH ST100
*0 = XVH %100
TZRV Y TARV Y TXHEV VI VA VX (O * WIINITOV3IE 01 £100
(1d1¢2=14(Tdr*e=r4(1dXdee=)* (NP1 IWVI)) {(IWNNIQY3H A 2100
(dI*T = I1
AT e g TS O T T T INR O T T AN O T D RNE T T T TN eYy Iy 1100
(al*T=14(dr¢T=Ps(dA*T=ME(MEPCTIZ4NCCTIASUr*TIIXI)) { TWNAN)CV3IY 0100
I-dd = 1dM 6000
o I=dl—="T1dT— — 8000
- 1=-dl = 1d! L000
dX¢df¢d]l (0EZ*ANNICYIY 2000
TRTINTONTIMIY SO0
2 = ZRWNN %000
6 = TWNN £000
T G=RIAN v 2000
(94 6H)INHE (24585 )ANHT
CU At D) UANHE (B985 )78 (o H 40 A (49 eh )X {4y )WY NDISNIWIQ 1000

A TSWVS dHI JFUTSINTG d1V NT HIONSELIS U 1313 SHI SIINdWOT RVdoOdd STHL O

A cU/%c/ 10 S6IB9 = 34vd NIVW 0 UOW “T T3A37 9 Al Nvilyod

V11wltid




Y

- ‘ ’ UNT , 1400
(9°613 = HHEC9*G13 =7ZHHE 9913 =AHHE ¢9°913dT =XHHE*OHT)ILVWIOd 09% 0v00
{9°9073 = ZHE*S*913 = AHE!'9*9T13dl= XREAOHTILVHEDL 0G¥ 600
T o Tae O OTd e rIvRana~ 0%y ; BEO0
“avd ‘ 20/%2/1

0 s61e% = FLvd NIvVi 0 Q0W *T TI3A3T 9 Al NVH1d0d

s, e mm—. oy, prsme s g, s e ey g .

P—




APPENDIX VIII

User Operating Instructions

I. Programwming Sysatem,

360,50 Fortran IV G programming system was used,

II. Equipuwent Needed.

The equipment used and needed was as follows:

| IBM 360/50 computer
‘2 Disk storage (memory)
R Card reader

4 Printer

§ Magnetic tapes.
- III. Job Make Up.

Section I.

P

Control Cards
//
//7PESOL100 JOB (R404ByTEST 345,5) "CLARK? yMSGLEVEL=]
// EXEC ”FDRTGCLG.PARM.FURT='LIST,MAPL,EARMQLKED;!LLSI.XREE!
; //FORT EXEC PGVM=IEYFORT
i //SYSPRINT DD SYSOUT=A
//SYSPUNCH. .. BR.SYSOUT=R L
} //SYSLIN DD DSNAME=SYS1.LOADSET,DISP=0LD,

| // DCB=(RECFM=FB, LRECL=80,BLKSIZE=400)
= . //FORT.SYSIN DBD_*._. e

i /// Main Programm

N See pp. VII-2 and 3,

w Subroutine MAGFIA

it
i
i
o

S5ee pp. VII-U4 and 5.

V4 |

Control Cards
//LKED EXEC PGM=T1EWL,PAPM=LIST,COND={0,LT,FCQRT)
//SYSLIB ___ DD__DSNAME=SYS1.EDRTLIB,DISP=0LD
//SYSLMOD DD DSNAME=&GOSET(MAIN) DISP=(,PASS) +SPACE=(CYL,(2,1,1)),
/7 UNIT=2311,VOLUME=SER=SYSLB2,D0CR=(RECFM=U,BLKSIZE=3625)
//DECKS . DD _DSNAME=SYS1.USERLIR,DISP=0LD
// DD DSNAME=SYS1.USERLIB2,DI1SP=CLD
% //SYSPRINT DO SYSOUT=A
% //SYSUTL. ... DD-DSNAME=SYS1.UT1,DISP=0LD
- //SYSLIN DD DSNAME=SYS1.,LOADSET,DISP=0LD
1/ DD DDNAME=SYSIN

VILI -1




Data Deck :
See in "Description of Input".

Section IX.

/7

//PESO100 JOB (R4C4B,.TEST1595)9 *CLARK'y MSGLEVEL=1

// _ _EXEC_FORTGCLG,PARM.FORT='MAPLLIST, LR =1 ’
//FORT EXEC PGN=IEYFCRT

//SYSPRINT DD SYSOUT=A
//SYSPUNCH___DD_SY.SOUT=R

//SYSLIN DD DSNAME=SYS1.LOADSET,DISP=0LD;

// CCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
//FORT.SYSIN DD %

— Control Cards N

B

Main Programm
See pp., VII-6 and 7

Subroutine PHICAL
See pp. VII-9, 10, and 11,

Subroutine HCAL
See pp. VII-12

Subroutine PERM
See pp. VII-13

AN

Control Cards

//LKED EXEC PGM=TEWLsPARM=LISTyCONC=(0,LT,FCRT)

//SYSLIB. DD _DSNAME=SYS1.FORTLIR,DISP=CLD

//SYSLMOD DD DSNAME=&GOSET(MAIN),DISP=(4PASS),SPACE=(CYL,(2,1,1)),
// UNIT=2311,VOLUME=SER=SYSLB2,CCB=(RECFM=U,BLKSIZE=3625
//DECKS CD. DSNAME=SYS1.USERLIB,LISP=CLD

/7 OD DSNAME=SYS1.USERLIB2,DISP=CLD

//SYSPRINT DD SYSOUT=A
//SYSUT1 . DD _DSNAME=SYS1.UT1,DISP=0LD
//SYSLIN 0D DSNAME=SYS1.LOADSET,DISP=0LC
/7 DO DDNAME=SYSIN

YIIEZ2

IRVAVAVaS




1
i
t
]

Oy
——————
1

7/7GQ.  EXEC PGM=%.{KED.SYSIMOUD,CONC=({0y 1T FCRT) (4l T44 KED))
//FTO05F001 OD DONAME=SYSIN
//FTO6FQ01- DD SYSOUT=A

//GOSET CO_CSNAME=AGOSET,DISP=(0LD,DELETE)
//GO.FTO8F001 OC UNIT=TAPE,VOLUME=SER=2Q0C36,LABFL=(1,BLP),
/7 . DISP=(NEW, PASS),
/7 DCR={DEN=2 y TRTCH=C,RECFM=V , | RECL=A04,BLKSIZ7E=608)
//GO.FTO9FQ01 DC UNIT=TAPE,VOLUME=SER=20040,LABEL=(1,BLP),
// DISP=(NEW,PASS),
/1/ e GCB=(DEN=2,TRTCH=C,RECFM=V,| RECL =604 ,BLKSTIZF=608)
//GC.SYSIN DD. =
<// Data Deck , ~~
N See i1 "Description of Input" /:>

Section III.

Control Cards . ~ ‘ e

/7
//PESO100 JOB (R4048,TEST41253) 3 *CLARK? ¢y MSGLEVEL=1

//  EXEC__FORTGCLGyPARM.FORT='MAP,{ IST,FRCDICY ,PARM. | KED="MAP .4 IST?
//7FCRT EXEC PGM=IEYFQORT

//7SYSPRINT DD SYSOUT=A

//SYSPUNCH__DD_SY.SCUT=8
//SYSLIN DD DSNAME=SYS1.LOADSET,DISP=0LD,

/7 DCB=(RECFM=FB, LRECL=80y BLKSIZE= 400)
//FORT.SYSIN_ DD %
[EF2361 ALLOC. FOR PESO100 FORT
IEF2371 SYSPUNCH ON 00D

JEF2371 _SYSLIN _ CN_18)

IEF2371 SYSIN CN 00C

<<:/ Main Programm (MAGFIA)

See pp. VII-14 and 15.

N/

Control Cards

"/LKED EXFC PGM=1EWL,PARM=LISTCOND={C,L Ty FORT)
7/SYSLIB___ DD DSNAME=SYS1.FORTLIBR,DISP=0LD
//SYSLMOD - DD DSNAME=&GOSET(MAIN),DISP={,PASS),SPACE=(CYLy(2,1,1)),

// UNIT=2311,VOLUME=SER=SYSLRZ,DCB= (RECFM UyBLKSTIZE=3625)
J//DECKS DD DSNAME=SYS1.USERL IB,0ISP=0LD
/7 DD CSKAME=SYS1. USERLIBZ,DISP gLD

//SYSPRINT DD SYSOUT=A

//SYSUT1l OO DSNAME=SYS1.UT1.DISP=01D
//7SYSLIN DD DSNAME=SYS1.LOADSET,DISP=0LD
/7 CD CDNAME=SYSIN

e
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Data Deck | ,
See in "Dexcription of Input” : :

IV, Description of Input.

The input is given on cards. In addition, scratch-tapes are
used to transfer output of Section I and II to input to Section
IT and III respectively,

Section I.

Main Programm ;j
Read Cards, The data on the Card Deck are shown on line -
0003 on p, VII-2, Format is shown on line 0058 on p. VII-3.

Example of Numerical Data 1is as follows:

See p. VIII~5
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X = 0.0 Y = 0.0 Z = 5, 000000E-02
X = 0.0 Y = 0.0 Z = 9.999996E~02
X = 0.0 Y = 0.0 Z = 1,500000E-01
X = 0.0 Y = 0.0 Z = 2.000000E~01
X = 0.0 Y = 0,0 Z = 2. 500000E~-01
X = 0.0 Y = 0.0 Z = 3.000000E-01
X= 00 Y= 0,0 Z = 3. 500000E-01 |
X = 0.0 Y = 0.0 Z = 4. 000000E-01
X= 0.0 Y= 0.0 Z = 4, 500000E-01
X = 0.0 Y = 0.0 Z = 5. 000000E~O1 \
X = 0,0 Y = 0.0 Z = 5« 500000E~01
X = 0.0 Y = 0.0 Z = 6,000000E-01
X = 0.0 Y = 0,0 Z = 6.500000E-01
X = 0,0 Y = 0.0 Z = 7 .000000E-01
X = 0.0 Y = 0.0 Z = 7 « 500000E-01
V., Tape Assignments )

Only scratch tapes are used, The use of tapes is listed

above, under "Description of Input", o

VI, Restrictions

See as dimension-statements in the programm, in Appendix VII. il

VI, Timing
See p., 81

VIII., Programmed Error Messages are none,

IX, Sample Input

See above in "IV Description of Input"

X, Sample Output

Is given in Appendix IX,
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Library Card Abstract

A procedure to calculate the magnetic field in three
dimensions in and around a magnetic body of field dependent
permeability is presented, written in Fortram IV Computer
language for (IBM 7094 machine or equivalent.) ~

Y R
I., Calculations are presented which define the m.m.f, grad.
°H_ in points of a three dimensional free space, for an arbitrary
current system, '

IT. Calculat{%ns are presented which determine the combined
m,m, f. grad., n at points within magnetic bodies of field
w—n
dependent permeability, by summing the m.m.f, grad. °Hn~s
-
calculated in Section I with the m.m.f. grad. mHn-s resulting

from dipoles at other points which in their turn are induced by
the m.m.,f, grad. H , resulting for the external fields of

neighboring magnetic bodies or points within the sawme body._ The
magnetic moment of such points arises by the m.m.f. grad. °Hn

due to the current system and by interaction.

iy, —tt m-

H = °H_ + H
n n n

ITI. Calculakions are presented which determine the 3 dimensional
m,m.f. grad, Hn, at any arbitrary point outside the magnetic body

a .
or bodies. Values of ”n are found by summing the m,m.f. grad.
°H, calculated in Section T with the contributions mﬁ; from the
points of magnetic bodies considered in Section IT.

Section T can be used independently, Section II requires
Section I. Section III requires both Section I and Section II.

Limitations are computer memory-space and machine~time,.
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